1. 题目

2. 解答

2.1. 递归法

定义一个存放树中数据的向量 data,从根节点开始,如果节点不为空,那么

    1. 递归得到其左子树的数据向量 temp,将 temp 合并到 data 中去
    1. 将当前节点的数值加入到 data 中
    1. 递归得到其右子树的数据向量 temp,将 temp 合并到 data 中去
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) { vector<int> data = {};
vector<int> temp = {}; if (root != NULL)
{
temp = inorderTraversal(root->left);
data.insert(data.end(),temp.begin(),temp.end());
data.push_back(root->val);
temp = inorderTraversal(root->right);
data.insert(data.end(),temp.begin(),temp.end());
} return data;
}
};
2.2. 迭代法

定义一个存放树中节点的栈 node_stack 和存放数据的向量 data,从根节点开始,如果节点不为空或者栈非空,循环以下过程:

    1. 如果节点非空,将节点压入栈,节点指向其左孩子,循环直到节点为空
    1. 如果节点为空,弹出栈顶节点,将节点的值加入 data,然后将节点指向其右孩子
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) { vector<int> data = {};
stack<TreeNode*> node_stack;
TreeNode* temp = root; while (temp || !node_stack.empty())
{
while(temp != NULL)
{
node_stack.push(temp);
temp = temp->left;
} temp = node_stack.top();
node_stack.pop();
data.push_back(temp->val);
temp = temp->right;
} return data;
}
};
2.3. Morris 遍历法

前面两种方法要么需要函数栈要么需要人工栈,其空间复杂度为 \(O(n)\),而 Morris 遍历法可以做到在不影响时间复杂度的情况下做到空间复杂度为 \(O(1)\)。

定义一个存放数据的向量 data,从根节点开始,如果当前节点非空,循环以下过程:

    1. 如果当前节点没有左孩子,将当前节点的值加入到 data 中,当前节点指向其右孩子
    1. 如果当前节点有左孩子,则寻找当前节点的前驱节点,即节点值小于该节点值并且值最大的节点,也即当前节点左子树中值最大的节点
    • a) 如果前驱节点没有右孩子,前驱节点右孩子指向当前节点,当前节点指向其左孩子
    • b) 如果前驱节点右孩子为当前节点,将当前节点的值加入到 data 中,当前节点指向其右孩子,前驱节点右孩子设为空(恢复原有树结构)

/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) { vector<int> data = {};
TreeNode* cur = root;
TreeNode* pre = NULL; while (cur)
{
if (cur->left == NULL)
{
data.push_back(cur->val);
cur = cur->right;
} else
{
// 寻找前驱结点
pre = cur->left;
while (pre->right != cur && pre->right)
{
pre = pre->right;
} if (pre->right == NULL)
{
pre->right = cur;
cur = cur->left;
}
else
{
data.push_back(cur->val);
cur = cur->right;
pre->right = NULL;
}
}
} return data;
}
};

参考资料

获取更多精彩,请关注「seniusen」!

LeetCode 94 ——二叉树的中序遍历的更多相关文章

  1. LeetCode 94. 二叉树的中序遍历(Binary Tree Inorder Traversal)

    94. 二叉树的中序遍历 94. Binary Tree Inorder Traversal 题目描述 给定一个二叉树,返回它的 中序 遍历. LeetCode94. Binary Tree Inor ...

  2. Java实现 LeetCode 94 二叉树的中序遍历

    94. 二叉树的中序遍历 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? / ...

  3. Leetcode 94. 二叉树的中序遍历

    1.问题描述 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 2.解法一 ...

  4. LeetCode 94. 二叉树的中序遍历(Binary Tree Inorder Traversal)

    题目描述 给定一个二叉树,返回它的中序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 由于 ...

  5. leetcode 94二叉树的中序遍历

    递归算法C++代码: /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; ...

  6. 【leetcode 94. 二叉树的中序遍历】解题报告

    前往二叉树的:前序,中序,后序 遍历算法 方法一:递归 vector<int> res; vector<int> inorderTraversal(TreeNode* root ...

  7. 【LeetCode】94. 二叉树的中序遍历

    94. 二叉树的中序遍历 知识点:二叉树:递归:Morris遍历 题目描述 给定一个二叉树的根节点 root ,返回它的 中序 遍历. 示例 输入:root = [1,null,2,3] 输出:[1, ...

  8. Leetcode题目94.二叉树的中序遍历(中等)

    题目描述: 给定一个二叉树,返回它的中序遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [1,3,2] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 思路解析: 1 ...

  9. leetcode刷题-94二叉树的中序遍历

    题目 给定一个二叉树,返回它的中序 遍历. 实现 # def __init__(self, x): # self.val = x # self.left = None # self.right = N ...

随机推荐

  1. 如何搭建私人的ghost博客

    可参考 http://blog.pandax.me/cjbk/ 此文

  2. Oracle以固定字符截取字符串

    CREATE OR REPLACE FUNCTION "F_SPLIT" (p_str IN CLOB, p_delimiter IN VARCHAR2) RETURN ty_st ...

  3. chromium之at_exit

    // This class provides a facility similar to the CRT atexit(), except that // we control when the ca ...

  4. 网站用户行为分析——Hadoop的安装与配置(单机和伪分布式)

    Hadoop安装方式 Hadoop的安装方式有三种,分别是单机模式,伪分布式模式,伪分布式模式,分布式模式. 单机模式:Hadoop默认模式为非分布式模式(本地模式),无需进行其他配置即可运行.非分布 ...

  5. java端连接zookeeper出现unknowHostException错误

    连接zookeeper出现异常:unknowHostException 出现这种错误一开始以为是zookeeper的配置文件出了问题,所以一直在找配置文件的问题,但是zookeeper在虚拟机里面是可 ...

  6. PHP变量问题,Bugku变量1

    知识点:php正则表达式,php函数,全局变量GLOBALS(注意global和$GLOBALS[]的区别) PHP函数: isset():     条件判断 get方法传递的args参数是否存在 p ...

  7. golang区块链开发的视频教程推荐

    目前网上关于golang区块链开发的资源很少,以太坊智能合约相关的课程倒是很多,可能是由于前者的难度比后者难度大,课程开发需要投入更多精力.搜了一圈之后没结果,我就直接去之前没覆盖的视频网站找资源,包 ...

  8. Fedora 下面安装FTP服务

    1. yum install vsftpd 2. systemctl disable vsftpd.service 3. systemctl stop vsftpd.service 4. system ...

  9. java入门---基本数据类型之引用数据类型&数据类型转换

        接着上一篇文章来,这次就先看看什么是引用数据类型?首先得满足以下条件: 在Java中,引用类型的变量非常类似于C/C++的指针.引用类型指向一个对象,指向对象的变量是引用变量.这些变量在声明时 ...

  10. Quartus II 项目文件分类及内容