Prison rearrangement
 
Time Limit: 3000MS   Memory Limit: 10000K
Total Submissions: 2158   Accepted: 971

Description

In order to lower the risk of riots and escape attempts, the boards of two nearby prisons of equal prisoner capacity, have decided to rearrange their prisoners among themselves. They want to exchange half of the prisoners of one prison, for half of the prisoners of the other. However, from the archived information of the prisoners' crime history, they know that some pairs of prisoners are dangerous to keep in the same prison, and that is why they are separated today, i.e. for every such pair of prisoners, one prisoners serves time in the first prison, and the other in the second one. The boards agree on the importance of keeping these pairs split between the prisons, which makes their rearrangement task a bit tricky. In fact, they soon find out that sometimes it is impossible to fulfil their wish of swapping half of the prisoners. Whenever this is the case, they have to settle for exchanging as close to one half of the prisoners as possible.

Input

On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two non-negative integers m and r, 1 < m < 200 being the number of prisoners in each of the two prisons, and r the number of dangerous pairs among the prisoners. Then follow r lines each containing a pair xi yi of integers in the range 1 to m,which means that prisoner xi of the first prison must not be placed in the same prison as prisoner yi of the second prison.

Output

For each test scenario, output one line containing the largest integer k <= m/2 , such that it is possible to exchange k prisoners of the first prison for k prisoners of the second prison without getting two prisoners of any dangerous pair in the same prison.

Sample Input

3
101 0
3 3
1 2
1 3
1 1
8 12
1 1
1 2
1 3
1 4
2 5
3 5
4 5
5 5
6 6
7 6
8 7
8 8

Sample Output

50
0
3
原文地址
题目意思:两个监狱,各有n个犯人,每个两个监狱之间一些犯人之间有一定的关系,对于有关系的犯人不能放在同一个监狱,原状态肯定是满足的,
因为存在这种关系的不存在同一个监狱的。求最大交换次数使得条件依然满足,并且交换次数不能超过n/2。 后记:我们两队的比赛题,琨哥说题目很水,我信了,这能水,唉,高估我们能力了,主要是用到 dfs + o1 背包问题,但是的确很难想到,我还想着用并查集呢,不会,参考了下别人的代码;
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int SIZE = ;
int m;
int r;
//map[i][j]表示i和j是否会冲突
int map[SIZE][SIZE];
//A组里的人数
int aSize;
//b组里的人数
int bSize;
//dp[i][j] 表示用A组的i个人换B组的j个人是否可行
bool dp[SIZE][SIZE];
//visited[0][i] 表示用A组中的点i是否被访问过
//visited[1][i] 表示用B组中的点i是否被访问过
bool visited[][SIZE];
void Init()
{
memset( map, , sizeof(map) );
memset( visited, , sizeof(visited) );
memset( dp, , sizeof(dp) );
}
void Input()
{
cin >> m >> r;
for( int i=; i<r; i++ )
{
int a, b;
cin >> a >> b;
map[a][b] = ;
}
}
//side=0 表示当前正在搜索A组
//side=1 表示当前正在搜索B组
//id 表示当前正在搜索的编号
void DFS( int side, int id )
{
visited[side][id] = true;
//如果当前搜索的是A组
if( side == )
{
//记录A组中的元素个数
aSize++;
for( int i=; i<=m; i++ )
{
//搜索的是B组中对应的点
if( map[id][i] && !visited[][i] )//看一组的 id ,是否有和二组的 i ,相连的不,并且二组的没有被标记;
{
DFS( , i ); //搜寻一组中是否有与二组相连的数;
}
}
}
else
{
bSize++;
for( int j=; j<=m; j++ )
{
if( map[j][id] && !visited[][j] )
{
DFS( , j );
}
}
}
}
//利用二维背包计算
void Knapsack()
{
dp[][] = true;
for( int x=m/; x>=aSize-; x-- )
{
for( int y=m/; y>=bSize-; y-- )
{
if( dp[x][y] || dp[x - aSize][y - bSize] )
{
// printf("%d %d\n",x,y);
dp[x][y] = true;
}
}
}
}
void Output()
{
for( int i=m/; i>=; i-- )
{
if( dp[i][i] ) // dp[i][i]; 表示各方都拿出来 i 个人,进行交换;
{
cout << i << endl;
break;
}
}
}
int main()
{
int caseNum;
cin >> caseNum;
while( caseNum-- )
{
Init();
Input();
for( int i=; i<=m; i++ )
{
//跳过已经处理过的节点
if( visited[][i] ) continue;
//计算A、B中的人数
aSize = ;
bSize = ;
DFS( , i ); // 搜索一次,就出现两组不相容的团体;
//利用二维背包计算
Knapsack();
}
for( int i=; i<=m; i++ )
{
if( visited[][i] ) continue;
aSize = ;
bSize = ;
DFS( , i );
Knapsack();
}
Output();
}
return ;
}

poj 1636 Prison rearrangement的更多相关文章

  1. POJ 1636 Prison rearrangement DFS+0/1背包

    题目链接: id=1636">POJ 1636 Prison rearrangement Prison rearrangement Time Limit: 3000MS   Memor ...

  2. POJ 1636 DFS+DP

    思路: 先搜索出来如果选这个点 其它哪些点必须选 跑个背包就好了 //By SiriusRen #include <cstdio> #include <cstring> #in ...

  3. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

  4. poj动态规划列表

    [1]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 13 ...

  5. POJ 动态规划题目列表

    ]POJ 动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322 ...

  6. poj 动态规划的主题列表和总结

    此文转载别人,希望自己可以做完这些题目. 1.POJ动态规划题目列表 easy:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, ...

  7. [转] POJ DP问题

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  8. POJ动态规划题目列表

    列表一:经典题目题号:容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1191,1208, 1276, 13 ...

  9. dp题目列表

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. ImageWriter制作ubuntu的U盘启动盘

    转自:http://my.oschina.net/f839903061/blog/197935?p={{currentPage+1}} 1.工具从ubuntn中文网中下载指定软件:ImageWrite ...

  2. [Java基础] Java线程复习笔记

    先说说线程和进程,现代操作系统几乎无一例外地采用进程的概念,进程之间基本上可以认为是相互独立的,共享的资源非常少.线程可以认为是轻量级的进 程,充分地利用线程可以使得同一个进程中执行多种任务.Java ...

  3. [Android Pro] ListView,GridView之LayoutAnimation特殊动画的实现

    转载自:http://gundumw100.iteye.com/blog/1874545 LayoutAnimation干嘛用的?不知道的话网上搜一下. Android的Animation之Layou ...

  4. 人工智能有简单的算法吗?Appendix: Is there a simple algorithm for intelligence?

    In this book, we've focused on the nuts and bolts of neural networks: how they work, and how they ca ...

  5. PHP的方法重载实现

    PHP提出面向对象以来,就有着各种各样的问题,其中,不直接支持对象方法重载就是一个让人纠心的问题,在其他语言里面,大可以有以下写法(以下是C++写法): class Abc(){ public fun ...

  6. python 将编码转为汉字

    print '\u57fa\u7840\u5316\u5de5\u4e1a'.decode('unicode-escape') print urllib.unquote("%C0%FA%CA ...

  7. RocketMQ通信协议

    我们先从client端看一个消息是如何发送到服务端,服务端又是如何解析消息的. client端: 构造请求体: 构造请求体: 发送消息体: 下面看服务端: rocketmq的协议服务端解析救灾这里了R ...

  8. windows Visual Studio 2017 编译 HEVC cmake-3.8.1-win64-x64.msi 下载

    ttps://github.com/OpenHEVC/openHEVC 下载一 直接下载源码(可选)或下载源码包,我这里下载的是源码 打开 Visual Studio () 去 github 找到源码 ...

  9. TestNG 七 annotation

    TestNG中用到的annotation的快速预览及其属性. @BeforeSuite:   被注释的方法将在所有测试运行前运行 @AfterSuite:  被注释的方法将在所有测试运行后运行 @Be ...

  10. 细数Python的特殊方法一:集合类

    1. 特殊方法汇总列表     2. 仿集合类 __len__:返回对象的长度 __getitem__:获得某一项的值 __setitem__:设置莫一项的值 __delitem__删除某一项 __c ...