http://www.lydsy.com/JudgeOnline/problem.php?id=1911

又是一个显然的dp……好吧我懒得讲了。

s[i]是战斗力前缀和。

我们仍然设k<j<i,化简一下得到f[j]-2*a*s[i]s[j]+a*s[j]^2-b*s[j]>f[k]-2*a*s[i]s[k]+a*s[k]^2-b*s[k]

于是得到:

0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]))<s[i]

显然可以斜率优化了。

(为什么变号,emmmmmm……a<0)

至于剩下的套路部分就请看土地购买这道题的解法吧。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll a,b,c;
ll f[N],q[N],s[N];
inline double suan(int k,int j){
return 0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]));
}
int main(){
n=read(),a=read(),b=read(),c=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)s[i])l++;
ll k=s[i]-s[q[l]];
f[i]=f[q[l]]+a*k*k+b*k+c;
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1911:[Apio2010]特别行动队——题解的更多相关文章

  1. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  2. BZOJ1911 [Apio2010]特别行动队 【斜率优化】

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 5005  Solved: 2455 [Submit][Sta ...

  3. 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)

    bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...

  4. BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...

  5. [bzoj1911][Apio2010]特别行动队

    Description 有个元素,可以将个元素分成多组,每组的元素编号必须是连续的. 设每组的为,则每组的价值公式为. 求最大价值和. Input 输入由三行组成. 第一行包含一个整数,表示士兵的总数 ...

  6. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  7. [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】

    题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...

  8. bzoj1911 [Apio2010]特别行动队commando

    题目链接 斜率优化 #include<cstdio> #include<cstdlib> #include<string> #include<cstring& ...

  9. 【文文殿下】[APIO2010]特别行动队 题解

    基本上是一个斜率优化裸题了 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int max ...

随机推荐

  1. redis 类型、方法

    之前使用redis,现在对所有redis方法做一个总结: string类型 形式:key=>value; 说明:最简单的类型:一个key对应一个value,value保存的类型是二进制安全的,s ...

  2. lintcode 466. 链表节点计数

    466. 链表节点计数 计算链表中有多少个节点.   样例 给出 1->3->5, 返回 3. /** * Definition of ListNode * class ListNode ...

  3. stm32之SPI通信协议

    SPI (Serial Peripheral interface),顾名思义就是串行外围设备接口.SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为P ...

  4. day-17 L1和L2正则化的tensorflow示例

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1-norm和ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数.L2范数也被称为权重衰 ...

  5. 深入理解eos账户体系 active和action

    在eos中,账户是一个非常重要的概念. 账户分为两部分组成 一种是active 一种是action. 智能合约本质上来讲就是一个action加上一个回馈脚本程序.任何智能合约都有这俩个部分组成. 那么 ...

  6. 操作系统及Python解释器工作原理讲解

    操作系统介绍 操作系统位于计算机硬件与应用软件之间 是一个协调.管理.控制计算机硬件资源与软件资源的控制程序 操作系统功能: 控制硬件 把对硬件复杂的操作封装成优美简单的接口(文件),给用户或者应用程 ...

  7. 1.Hadoop介绍

    1. Hadoop介绍 1.1 什么是Hadoop 开源的,可靠的,分布式的,可伸缩的 提供的功能: 利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理 1.2 处理方式 大众角度 数 ...

  8. JQuery常用函数方法全集

    Attribute: $("p").addClass(css中定义的样式类型); 给某个元素添加样式 $("img").attr({src:"test ...

  9. 最小生成树——prim

    prim:逐“点”生成最小生成树 与Dijkstra不同的是:加入点到生成树中,不要考虑与源点的距离,而是考虑与生成树的距离 #include <iostream> #include &l ...

  10. 软件工程 part4 评价3作品

    作品1 抢答器 地址: https://modao.cc/app/ylGTXobcMU7ePNi6tY53gG4iraLl0md评价: 挺好玩,但是字体大小是个缺陷,简单大方. 作品2:连连看 软件工 ...