http://www.lydsy.com/JudgeOnline/problem.php?id=1911

又是一个显然的dp……好吧我懒得讲了。

s[i]是战斗力前缀和。

我们仍然设k<j<i,化简一下得到f[j]-2*a*s[i]s[j]+a*s[j]^2-b*s[j]>f[k]-2*a*s[i]s[k]+a*s[k]^2-b*s[k]

于是得到:

0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]))<s[i]

显然可以斜率优化了。

(为什么变号,emmmmmm……a<0)

至于剩下的套路部分就请看土地购买这道题的解法吧。

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(ch<''||ch>''){if(ch=='-')w=-;ch=getchar();}
while(ch>=''&&ch<='')X=(X<<)+(X<<)+ch-'',ch=getchar();
return X*w;
}
int n,l,r;
ll a,b,c;
ll f[N],q[N],s[N];
inline double suan(int k,int j){
return 0.5*(f[j]+a*s[j]*s[j]-b*s[j]-f[k]-a*s[k]*s[k]+b*s[k])/(a*(s[j]-s[k]));
}
int main(){
n=read(),a=read(),b=read(),c=read();
for(int i=;i<=n;i++)s[i]=s[i-]+read();
for(int i=;i<=n;i++){
while(l<r&&suan(q[l],q[l+])<(double)s[i])l++;
ll k=s[i]-s[q[l]];
f[i]=f[q[l]]+a*k*k+b*k+c;
while(l<r&&suan(q[r],i)<suan(q[r-],q[r]))r--;
q[++r]=i;
}
printf("%lld\n",f[n]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ1911:[Apio2010]特别行动队——题解的更多相关文章

  1. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  2. BZOJ1911 [Apio2010]特别行动队 【斜率优化】

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Submit: 5005  Solved: 2455 [Submit][Sta ...

  3. 【题解】 bzoj1911: [Apio2010]特别行动队 (动态规划+斜率优化)

    bzoj1911,懒得复制,戳我戳我 Solution: 线性DP(打牌) \(dp\)方程还是很好想的:\(dp[i]=dp[j-1]+a*(s[i]-s[j-1])^2+b*(s[i]-s[j-1 ...

  4. BZOJ1911 [Apio2010]特别行动队 - 动态规划 - 斜率优化

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 UPD(2018-04-01):用Latex重打了公式…… 题意概括 把一个整数序列划分成任意连续的段,使得划分出 ...

  5. [bzoj1911][Apio2010]特别行动队

    Description 有个元素,可以将个元素分成多组,每组的元素编号必须是连续的. 设每组的为,则每组的价值公式为. 求最大价值和. Input 输入由三行组成. 第一行包含一个整数,表示士兵的总数 ...

  6. [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)

    Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...

  7. [luogu3628][bzoj1911][APIO2010]特别行动队【动态规划+斜率优化DP】

    题目描述 给你一个数列,让你将这个数列分成若干段,使其每一段的和的\(a \times sum^2 + b \times sum + c\)的总和最大. 分析 算是一道斜率优化的入门题. 首先肯定是考 ...

  8. bzoj1911 [Apio2010]特别行动队commando

    题目链接 斜率优化 #include<cstdio> #include<cstdlib> #include<string> #include<cstring& ...

  9. 【文文殿下】[APIO2010]特别行动队 题解

    基本上是一个斜率优化裸题了 #include<bits/stdc++.h> using namespace std; typedef long long ll; const int max ...

随机推荐

  1. 移动性能测试之gemebench安装

    越来越多的人从事各种移动端性能测试,但工具和文档的资料却相对较少,这两天需要测试一款APP的性能,就来先简单介绍下gamebench的安装吧! 作为国人来说,使用gamebench还是有相当多的坑点: ...

  2. 爬虫1.5-ajax数据爬取

    目录 爬虫-ajax数据爬取 1. ajax数据 2. selenium+chromedriver知识准备 3. selenium+chromedriver实战拉勾网爬虫代码 爬虫-ajax数据爬取 ...

  3. python selenium 使用htmlunit 执行测试。非图形界面浏览器。

    其实就是换个浏览器,只是这个浏览器没有图形界面而已. browser = webdriver.Chrome() 换成 browser = webdriver.Remote(desired_capabi ...

  4. Solidity中的基本类型转换

    Solidity中的基本类型转换(十四)|入门系列 2017/4/29 posted in Solidity入门系列 点击查看原文,获得优化的排版. 隐式转换 如果一个运算符能支持不同类型.编译器会隐 ...

  5. Linux内核设计笔记10——内核同步

    Linux内核同步笔记 几个基本概念 - 临界区(critical region):访问和操作共享数据的代码段: - 原子操作:操作在执行中不被打断,要么不执行,要么执行完: - 竞争条件: 两个线程 ...

  6. [C++] String Basic

    Namespace Declarations A using declaration let us use a name from a namespace without qualify the na ...

  7. php分页类的实现与调用 (自我摘记)

    page.class.php <?php namespace Component; class Page { private $total; //数据表中总记录数 private $listRo ...

  8. 业务迁移---redis

    以前也没怎么搞过redis 只知道他是一个nosql数据库很强大,这次迁移用到了~  正好熟练一下并记录过程,还挺繁琐.. 记录一下在学习中的几个问题,总结加深一下印象,有可能会漏掉或者有误差的地方~ ...

  9. JS原型与面向对象总结

    ECMAScript有两种开发模式:1.函数式(过程化),2.面向对象(OOP).面向对象的语言有一个标志,那就是类的概念,而通过类可以创建任意多个具有相同属性和方法的对象.但 是,ECMAScrip ...

  10. Unity3d学习日记(一)

      闲来无事开始自学unity3d,发现还挺容易入门的,添加资源文件以及用c#编写脚本都很方便.   前面在Unity官方教程上自学了一段时间,跟着教程写了个space_shooter的小游戏,虽然游 ...