poj 1837 Balance(背包)
题目链接:http://poj.org/problem?id=1837
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 10983 | Accepted: 6824 |
Description
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.
Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values.
Output
Sample Input
2 4
-2 3
3 4 5 8 题目大意:有一个天平左右两边有C个挂钩,G个钩码。求将全部钩码都挂在钩子上是天平平衡的方法数。这个题目看过去真的是没想法,想想看考完六级,耐心的看完题意,但是能想到的只有用搜索,但是20^20的复杂度超时0.0 想了许久,用最简单的动态规划来写。动态规划的思想就是改变状态的时刻可以从前几状态的推出来。首先要先定义一个平衡度j,j=0表示天平平衡,j>0表示天平右偏,j<0表示天平向左倾。 其次,定义一个状态数组dp[i][j],表示挂满i个钩码的时候,平衡度为j时的挂法种数。那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的力臂
力臂=重量 *臂长 = w[i]*c[k];那么若在挂上第i个砝码之前,天枰的平衡度为j则挂上第i个钩码后,即把前i个钩码全部挂上天枰 后,天枰的平衡度 j=j+ w[i]*c[k]
特别注意:最极端的情况是所有物体都挂在最远端,因此平衡度最大值为15*20*25=7500。原则上就应该有dp[ 0..20 ][-7500 .. 7500 ]。因此做一个处理,使得数组开为 dp[0.. 20][0..15000]。
详见代码。
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int dp[][]; int main()
{
int C,G;
int c[],w[];
while (~scanf("%d%d",&C,&G))
{
for (int i=; i<=C; i++)
{
scanf("%d",&c[i]);
}
for (int j=; j<=G; j++)
{
scanf ("%d",&w[j]);
}
memset(dp,,sizeof(dp));
dp[][]=;
for (int i=; i<=G; i++)
for (int j=; j<=; j++)
{
//cout<<1111<<endl;
for (int k=; k<=C; k++)
dp[i][j+w[i]*c[k]]+=dp[i-][j];
}
printf ("%d\n",dp[G][]);
}
return ;
}
poj 1837 Balance(背包)的更多相关文章
- POJ 1837 -- Balance(DP)
POJ 1837 -- Balance 转载:優YoU http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...
- POJ 1837 Balance 01背包
题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...
- POJ 1837 Balance(01背包变形, 枚举DP)
Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...
- poj 1837 Balance (0 1 背包)
Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10326 Accepted: 6393 题意:给你n个挂 ...
- POJ 1837 Balance 水题, DP 难度:0
题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...
- poj 1837 01背包
Balance Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java clas ...
- POJ 1837 Balance
Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...
- [poj 1837] Balance dp
Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...
- POJ 1837 Balance 【DP】
题意:给出一个天平,给出c个钩子,及c个钩子的位置pos[i],给出g个砝码,g个砝码的质量w[i],问当挂上所有的砝码的时候,使得天平平衡的方案数, 用dp[i][j]表示挂了前i个砝码时,平衡点为 ...
随机推荐
- c++移动文件夹
bool Files::MoveSampleFolder(string src_path,string dst_path) { int index = src_path.find_last_of(&q ...
- JVM(一)运行机制
1.启动流程 2.JVM基本结构 PC寄存器 >每个线程拥有一个PC寄存器 >在线程创建时创建 >指向下一条指令的地址 >执行本地方法时,PC的值为undefined 方法区 ...
- 配置apt-get告诉下载源
本文转自:http://blog.csdn.net/hyl1718/article/details/7915296 方法: 1.修改源地址: cp /etc/apt/sources.list /etc ...
- Delphi中Sender对象的知识
Sender是一个TObject类型的参数,它告诉Delphi哪个控件接收这个事件并调用相应的处理过程.你可以编写一个单一的事件处理句柄,通过Sender参数和IF…THEN…语句或者CASE语句配合 ...
- echart模块化单文件引入
echart模块化单文件引入百度上面是推荐这样使用.今天看了一下,做了个Demo. 文件结构如下:
- 浅析Nim游戏(洛谷P2197)
首先我们看例题:P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔 ...
- BZOJ1934:[SHOI2007]善意的投票 & BZOJ2768:[JLOI2010]冠军调查——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1934 https://www.lydsy.com/JudgeOnline/problem.php? ...
- BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3675 https://www.luogu.org/problemnew/show/P3648 ht ...
- 洛谷3934:Nephren Ruq Insania——题解
https://www.luogu.org/problemnew/show/P3934 题面自己读吧(滑稽. 看到这道题就能够想到BZOJ4869:[SHOI2017]相逢是问候我们曾经用过的哲学扩展 ...
- 实验五 TCP传输及加解密
北京电子科技学院(BESTI) 实 验 报 告 课程:Java程序设计 班级:1353 姓名:陈巧然 ...