poj 1837 Balance(背包)
题目链接:http://poj.org/problem?id=1837
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 10983 | Accepted: 6824 |
Description
It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and Gigel wants to hang up some weights from his collection of G weights (1 <= G <= 20) knowing that these weights have distinct values in the range 1..25. Gigel may droop any weight of any hook but he is forced to use all the weights.
Finally, Gigel managed to balance the device using the experience he gained at the National Olympiad in Informatics. Now he would like to know in how many ways the device can be balanced.
Knowing the repartition of the hooks and the set of the weights write a program that calculates the number of possibilities to balance the device.
It is guaranteed that will exist at least one solution for each test case at the evaluation.
Input
• the first line contains the number C (2 <= C <= 20) and the number G (2 <= G <= 20);
• the next line contains C integer numbers (these numbers are also distinct and sorted in ascending order) in the range -15..15 representing the repartition of the hooks; each number represents the position relative to the center of the balance on the X axis (when no weights are attached the device is balanced and lined up to the X axis; the absolute value of the distances represents the distance between the hook and the balance center and the sign of the numbers determines the arm of the balance to which the hook is attached: '-' for the left arm and '+' for the right arm);
• on the next line there are G natural, distinct and sorted in ascending order numbers in the range 1..25 representing the weights' values.
Output
Sample Input
2 4
-2 3
3 4 5 8 题目大意:有一个天平左右两边有C个挂钩,G个钩码。求将全部钩码都挂在钩子上是天平平衡的方法数。这个题目看过去真的是没想法,想想看考完六级,耐心的看完题意,但是能想到的只有用搜索,但是20^20的复杂度超时0.0 想了许久,用最简单的动态规划来写。动态规划的思想就是改变状态的时刻可以从前几状态的推出来。首先要先定义一个平衡度j,j=0表示天平平衡,j>0表示天平右偏,j<0表示天平向左倾。 其次,定义一个状态数组dp[i][j],表示挂满i个钩码的时候,平衡度为j时的挂法种数。那么每次挂上一个钩码后,对平衡状态的影响因素就是每个钩码的力臂
力臂=重量 *臂长 = w[i]*c[k];那么若在挂上第i个砝码之前,天枰的平衡度为j则挂上第i个钩码后,即把前i个钩码全部挂上天枰 后,天枰的平衡度 j=j+ w[i]*c[k]
特别注意:最极端的情况是所有物体都挂在最远端,因此平衡度最大值为15*20*25=7500。原则上就应该有dp[ 0..20 ][-7500 .. 7500 ]。因此做一个处理,使得数组开为 dp[0.. 20][0..15000]。
详见代码。
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int dp[][]; int main()
{
int C,G;
int c[],w[];
while (~scanf("%d%d",&C,&G))
{
for (int i=; i<=C; i++)
{
scanf("%d",&c[i]);
}
for (int j=; j<=G; j++)
{
scanf ("%d",&w[j]);
}
memset(dp,,sizeof(dp));
dp[][]=;
for (int i=; i<=G; i++)
for (int j=; j<=; j++)
{
//cout<<1111<<endl;
for (int k=; k<=C; k++)
dp[i][j+w[i]*c[k]]+=dp[i-][j];
}
printf ("%d\n",dp[G][]);
}
return ;
}
poj 1837 Balance(背包)的更多相关文章
- POJ 1837 -- Balance(DP)
POJ 1837 -- Balance 转载:優YoU http://user.qzone.qq.com/289065406/blog/1299341345 提示:动态规划,01背包 初看此题第 ...
- POJ 1837 Balance 01背包
题目: http://poj.org/problem?id=1837 感觉dp的题目都很难做,这道题如果不看题解不知道憋到毕业能不能做出来,转化成了01背包问题,很神奇.. #include < ...
- POJ 1837 Balance(01背包变形, 枚举DP)
Q: dp 数组应该怎么设置? A: dp[i][j] 表示前 i 件物品放入天平后形成平衡度为 j 的方案数 题意: 有一个天平, 天平的两侧可以挂上重物, 给定 C 个钩子和G个秤砣. 2 4 - ...
- poj 1837 Balance (0 1 背包)
Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10326 Accepted: 6393 题意:给你n个挂 ...
- POJ 1837 Balance 水题, DP 难度:0
题目 http://poj.org/problem?id=1837 题意 单组数据,有一根杠杆,有R个钩子,其位置hi为整数且属于[-15,15],有C个重物,其质量wi为整数且属于[1,25],重物 ...
- poj 1837 01背包
Balance Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u Java clas ...
- POJ 1837 Balance
Balance Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9240 Accepted: 5670 Description G ...
- [poj 1837] Balance dp
Description Gigel has a strange "balance" and he wants to poise it. Actually, the device i ...
- POJ 1837 Balance 【DP】
题意:给出一个天平,给出c个钩子,及c个钩子的位置pos[i],给出g个砝码,g个砝码的质量w[i],问当挂上所有的砝码的时候,使得天平平衡的方案数, 用dp[i][j]表示挂了前i个砝码时,平衡点为 ...
随机推荐
- c++源文件到可执行文件的过程
1.预处理(preprocessor):对#pragma.#include.#define.#ifdef/#endif.#ifndef/#endif,inline内联函数等进行处理 2.编译(comp ...
- BZOJ4237 稻草人(分治+树状数组+单调栈)
如果要询问的某个纵坐标为inf的点左边是否有点能与其构成所要求的矩形,只要用个单调栈就可以了.可以想到用分治来制造单调性. 按横坐标排序,每次考虑跨过分治中心的矩形.考虑右边的每个点能与左边的哪些点构 ...
- [BZOJ4589]Hard Nim
description BZOJ 题意:\(n\)堆式子,每堆石子数量为\(\le m\)的质数,对于每一个局面玩\(Nim\)游戏,求后手必胜的方案数. data range \[n\le 10^9 ...
- YY的GCD 莫比乌斯反演
---题面--- 题解: $ans = \sum_{x = 1}^{n}\sum_{y = 1}^{m}\sum_{i = 1}^{k}[gcd(x, y) == p_{i}]$其中k为质数个数 $$ ...
- 【CodeChef】Palindromeness(回文树)
[CodeChef]Palindromeness(回文树) 题面 Vjudge CodeChef 中文版题面 题解 构建回文树,现在的问题就是要求出当前回文串节点的长度的一半的那个回文串所代表的节点 ...
- [bzoj] 2657 ZJOI2012 旅游 || bfs
原题 题意: 一个多边形,三角剖分,求一条对角线最多能经过多少三角形 题解: 因为不涉及坐标之类的,所以根几何肯定一点关系都没有. 我们会发现,对于有共边的两个三角形,可以被同一条线穿过,而这就相当于 ...
- BZOJ2924 [Poi1998]Flat broken lines 【Dilworth定理 + 树状数组】
题目链接 BZOJ2924 题解 题面有误..是\(45°\) 如果两个点间连线与\(x\)轴夹角在\(45°\)以内,那么它们之间连边 求最小路径覆盖 = 最长反链 由于\(45°\)比较难搞,我们 ...
- 【BZOJ 3811】玛里苟斯 大力观察+期望概率dp+线性基
大力观察:I.从输出精准位数的约束来观察,一定会有猫腻,然后仔细想一想,就会发现输出的时候小数点后面不是.5就是没有 II.从最后答案小于2^63可以看出当k大于等于3的时候就可以直接搜索了 期望概率 ...
- 【状压DP】【P2831】【NOIP2016D2T3】愤怒的小鸟
传送门 Description Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 $(0,0)$ 处,每次 Kiana 可以用它向第一象限发射一 ...
- jq的each理解
1种 通过each遍历li 可以获得所有li的内容 <!-- 1种 --> <ul class="one"> <li>11a</li> ...