【NLP_Stanford课堂】情感分析
一、简介
实例:
- 电影评论、产品评论是positive还是negative
- 公众、消费者的信心是否在增加
- 公众对于候选人、社会事件等的倾向
- 预测股票市场的涨跌
Affective States又分为:
- emotion:短暂的情感,比如生气、伤心、joyful开心、害怕、羞愧、骄傲等
- mood:漫无原因的低强度长时间持续的主观感觉变化,比如cheerful,gloomy阴郁、irritable急躁、
- interpersonal stance:人际关系中对另一个人的立场,比如友好的、友善的
- attitude:态度,比如喜欢、讨厌
- personality trait:个性品质,比如鲁莽、焦虑
在情感分析中,我们针对的是attitude,分析的是:
- attitude的持有者(来源)
- attitude的目标(方面)
- attitude的类型:
- 来自一组类型:喜欢、爱、恨hate、重视value、渴望desire等
- 简单的带权重的极性:积极、消极和中性,均带有强度
- attitude的文本:句子或者整个文档
情感分析的任务:
- 简单任务:文本的attitude是积极还是消极
- 复杂任务:按照1-5对文本的attitude评级
- 高级任务:检查attitude的来源、目标或者复杂的attitude类型
二、基准算法

任务:极性检测:一部IMDB上的电影评论是积极还是消极
数据:Polarity Data 2.0: http://www.cs.cornell.edu/people/pabo/movie-review-data
步骤:
- Tokenization:将文本切分成词汇
- 特征提取
- 使用分类器分类:
- Naive Bayes
- MaxEnt
- SVM
1. Tokenization
需要应对:
- HTML和XML标记
- Twitter的标记(如,用户名、@)
- 大写单词(有时候需要保留)
- 电话号码、日期
- 表情符号
- 其他:

2. 特征提取
有效特征:
- 否定词
- 把在not后面直到下一个标点符号之间的词都加上NOT_,如下:

- 只选择形容词或者所有词(所有词的效果更好)
3. 二值多项式朴素贝叶斯
主要思想:在情感分析或者其他文本分类的任务中,认定一个词是否出现比起出现的频次更重要
训练过程:
- 将所有词的计数都重设为1
- 从训练语料中提取词汇表

- 将每个文档中的词去重,只保留一个实例
- 将所有属于docsj类别的文档都连接成一个文档得到Textj

测试过程:
- 将测试文档中的词去重

交叉验证:
- 将数据分成10组,每组内的测试集和训练集中positive和negative的比例一样
- 用前9组数据分别训练9个分类器,将最后一组数据完全作为测试集
- 以下是其中五组数据:

- 每组数据得到一个正确率,然后计算平均正确率
4. 难点
- 有些评论很隐晦,难以被分类器察觉
- 评论说的是原来自身的期望,然后说不符合期望,比如It should be brilliant,但是最后一句往往会说一句消极的话,所以语序也很重要
三、情感词典
词典中的每个词都存储了所属的情感。
1. 一般的情感词典
如下:





不同情感词典之间的同一个词极性的不一致性

2. 实例分析
分析IMDB中的每个词的极性
类别为1-10星,电影评论中都会附有星级评价,用这个来做类别,然后分析每个评论中的词,用以确定每个词的极性。
同一个词“bad”在不同的星级下计数如下:

可以发现1星最多,这也是因为1星的评价最多,所以我们不能直接用这个来确定极性,而是用如下计算:
最大似然估计:
不同词之间的比较使用范围最大似然估计Scaled likelihood:
具体分析不同词在不同星级下的范围最大似然估计如下:

可以发现amazing和awesome在高分星级上出现的比较多,而bad和terrible在低分星级上出现较多
其他情感特征:否定词(no, not)

可以发现否定词在低分星级上出现的比较多
四、建立情感词典
主要使用半监督学习
- 先使用一个小的数据集,可能是
- 一些带标签的实例
- 一些手动建立的模式
- 然后建立一个词典
1. 基准算法
基本思想:源于

- 如果两个形容词用“and”连接,那么他们有相同的极性
- 如果用“but"连接,那么他们有相反的极性
步骤:
- 手动标记一个包括1336个形容词的种子数据集,其中有657个词是positive,679个词是negative
- 通过连接的形容词来扩展种子数据集。
- 比如使用Google:

- 建立一个有监督的分类器,用以给每个词对分配极性相似性,即两个词极性上有多相似,主要使用count(AND)和count(BUT)。得到如下示意图:
- 将上图聚类成两堆,分别为positive和negative,如下:
- 输出极性的词典:positive和negative
以上是针对形容词,下面介绍一种针对短语的词典的建立方法Turney Algorithm。
2. Turney算法
步骤类似,如下:
- 从评论中提取建立一个短语词典
- 将有如下词性组合的两个词都作为一个短语:
,其中JJ表示形容词,NN表示名词,NNS表示复数形式的名词
- 将有如下词性组合的两个词都作为一个短语:
- 学习每个短语的词性:使用点间互信息PMI,基本思想也是使用两个词“and”共现的词的计数

- 如何预估PMI:使用查询机制,类似于上述的搜索Google:
- 然后计算一个短语的极性:
- 对一个评论,计算其中的短语的平均极性,再评级
- 一个评论结果如下:
- 一个评论结果如下:
Turney Algorithm结果如下:

可以发现Turney算法比起基准算法更准确,或许是因为
- 短语比起单个词更准确
- Turney算法可以学到特定领域的信息
3. 使用WordNet学习极性
WordNet:在线同义词词典
步骤:
- 创建positive和negative的种子词典(“good”和“terrible”)
- 找到各种子词典里的同义词和反义词
- 重复以上步骤
- 过滤
五、其他情感分析任务
【NLP_Stanford课堂】情感分析的更多相关文章
- 朴素贝叶斯算法下的情感分析——C#编程实现
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...
- Stanford NLP学习笔记:7. 情感分析(Sentiment)
1. 什么是情感分析(别名:观点提取,主题分析,情感挖掘...) 应用: 1)正面VS负面的影评(影片分类问题) 2)产品/品牌评价: Google产品搜索 3)twitter情感预测股票市场行情/消 ...
- 情感分析的现代方法(包含word2vec Doc2Vec)
英文原文地址:https://districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis 转载文章地址:http://da ...
- SA: 情感分析资源(Corpus、Dictionary)
先主要摘自一篇中文Survey,http://wenku.baidu.com/view/0c33af946bec0975f465e277.html 4.2 情感分析的资源建设 4.2.1 情感分析 ...
- 爬虫再探实战(五)———爬取APP数据——超级课程表【四】——情感分析
仔细看的话,会发现之前的词频分析并没有什么卵用...文本分析真正的大哥是NLP,不过,这个坑太大,小白不大敢跳...不过还是忍不住在坑边上往下瞅瞅2333. 言归正传,今天刚了解到boson公司有py ...
- Python爬虫和情感分析简介
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着 ...
- C#编程实现朴素贝叶斯算法下的情感分析
C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Lang ...
- R语言做文本挖掘 Part5情感分析
Part5情感分析 这是本系列的最后一篇文章,该.事实上这种单一文本挖掘的每一个部分进行全部值获取水落石出细致的研究,0基础研究阶段.用R里面现成的算法,来实现自己的需求,当然还參考了众多网友的智慧结 ...
- 如何科学地蹭热点:用python爬虫获取热门微博评论并进行情感分析
前言:本文主要涉及知识点包括新浪微博爬虫.python对数据库的简单读写.简单的列表数据去重.简单的自然语言处理(snowNLP模块.机器学习).适合有一定编程基础,并对python有所了解的盆友阅读 ...
随机推荐
- maxscript批量设置摄像机并保存渲染图
代码可直接运行 fn renderr = ( a=box() --新建一个立方体 ambientcolor = (color ) --设置环境光(搞不太懂,白的不出错就行) to do ( dis = ...
- AngularJs学习笔记--Managing Service Dependencies
原版地址:http://docs.angularjs.org/guide/dev_guide.services.managing_dependencies angular允许service将其他ser ...
- 使用jsp完成商品列表的动态显示
1数据库准备工作 1创建数据库 2 创建product表 代码如下: CREATE TABLE `product` ( `pid` ) NOT NULL, `pname` ) DEFAULT NULL ...
- 使用spring遇到问题 事物不提交和更新失败
1 使用学习使用spring mvc进行前端代码编写,发现提交修改没发sql语句 测试dao层又没问题 解决: 原来是spring配置文件,事物管理 绑定到了dao层.测试界面前端应该绑定到servi ...
- SSH框架学习步骤
Hibernate 对象状态 关系映射 SQL语句 缓存抓取 struts action的分发配置 参数传递 文件上传 spring IOC AOP
- 为 “超级大脑”构建支撑能力,腾讯云聚焦AI技术落地
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 5月24日,以"无界数据.无限智能"为主题的2018腾讯"云+未来"峰会AI大数据分论坛在广州拉开帷 ...
- 如何制作Win10系统U盘安装镜像
准备的工具: 1.空间8G以上的U盘一个 2.系统镜像文件(ISO格式)下载:https://msdn.itellyou.cn/ 3.UltraISO 下载:https://cn.ultraiso.n ...
- C# 多线程系列之Semaphore使用
Semaphore,即信号量的意思.是操作系统原始提供的内核同步对象. Semaphore semaphoreAcceptedClients = , 3,"Semaphore1") ...
- 工厂模式(Factory Pattern)
一.工厂模式(Factory Pattern)的介绍 工厂模式是我们最常用的实例化对象模式了,是用工厂方法代替new操作的一种模式.在工厂模式中,我们在创建对象时不会对客户端暴露创建逻辑,并且是通过使 ...
- centos7安装java开发环境
一. 安装jdk 1.进入oracle官网下载jdk-8u152-linux-x64.tar.gz,用WinScp将文件上传到/usr/local文件下 2.解压:执行命令 tar –xzvf jdk ...





