链接:



Common Subsequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17621    Accepted Submission(s): 7401

Problem Description
A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2,
..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length
common subsequence of X and Y. 

The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard
output the length of the maximum-length common subsequence from the beginning of a separate line. 
 
Sample Input
abcfbc abfcab
programming contest
abcd mnp
 
Sample Output
4
2
0
 
Source
 
Recommend
Ignatius
 



题意:


     求最长公共上升子序列
        就是第一个序列和第二个序列中有几个相同的。
        子序列:
                如果有一个序列 <A1, A2, A3,... An> 还有个序列 <Ak1, A k2, ... A kn> 满足 k1 < k2 < k3,
                那么 第二个序列是第一个序列的子序列
        最长公共子序列:
                就是从几个序列【一般是两个了】中找出一样的最长的子序列

分析:

用 dp[i][j] 记录序列 A 中从 0 到 i-1  和序列 B 中从 0  到 j-1  的最长公共子序列长度

O(n^n)写法:

先初始化 dp 为 0

当 A 序列遍历到第 i-1 个,序列 B  遍历到第 j-1 个

1) 如果此时 A[i-1] == B[j-1] , 那么可想而知 dp[i][j] = dp[i-1][j-1] +1
2) 如果此时 A[i-1] != B[j-1], 那么 dp[i][j] = max( dp[i-1][j],  dp[i][j-1] )

总之相当于记忆化搜索的了 dp[i][j] 从左到右从上到下, 当确立了当前字符是否相等时
那么 dp[i][j] 就由它的左上角 ( dp[i-1][j-1] )、上面的 ( dp[i-1][j] )、前面的 ( dp[i][j-1] ) 确定

/**
求长度为 len1 的序列 A 和长度为 len2 的序列 B 的LCS
注意:序列下标从 0 开始
*/
void LCS(int len1,int len2)
{
for(int i = 1; i <= len1; i++)
{
for(int j = 1; j <= len2; j++)
{
if(s1[i-1] == s2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
else
{
int m1 = dp[i-1][j];
int m2 = dp[i][j-1];
dp[i][j] = max(m1, m2);
}
}
}
}


比完赛了学妹提到的,将 dp[maxn][maxn]优化到 dp[2][maxn]
其实也是滚动数组的概念了:
由上面的分析我们发现这一点:当前的 dp[i][j] 只是与以它为右下角的四个 dp 有关

dp[i-1][j-1]  dp[i-1][j]
dp[i][j-1]     dp[i][j]

而我们并不是要求出每一段的 LCS 而只是求出最终的长度的 LCS,那么每次对 i %2 就可以解决问题

这样就大大优化了内存
void LCS(int len1,int len2)
{
for(int i = 1; i <= len1; i++)
{
for(int j = 1; j <= len2; j++)
{
if(s1[i-1] == s2[j-1]) dp[i%2][j] = dp[(i-1)%2][j-1]+1;
else
{
int m1 = dp[(i-1)%2][j];
int m2 = dp[i%2][j-1];
dp[i%2][j] = max(m1, m2);
}
}
}
}

code:

普通:
A Accepted 1244 KB 31 ms C++ 749 B

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 500+10;
int dp[maxn][maxn];
char s1[maxn], s2[maxn]; /**
求长度为 len1 的序列 A 和长度为 len2 的序列 B 的LCS
注意:序列下标从 0 开始
*/
void LCS(int len1,int len2)
{
for(int i = 1; i <= len1; i++)
{
for(int j = 1; j <= len2; j++)
{
if(s1[i-1] == s2[j-1]) dp[i][j] = dp[i-1][j-1]+1;
else
{
int m1 = dp[i-1][j];
int m2 = dp[i][j-1];
dp[i][j] = max(m1, m2);
}
}
}
} int main()
{
while(scanf("%s%s", s1,s2) != EOF)
{
int len1 = strlen(s1);
int len2 = strlen(s2);
memset(dp,0,sizeof(dp)); LCS(len1, len2);
printf("%d\n", dp[len1][len2]);
}
}

滚动数组:
Accepted 1159 31MS 232K 794 B C++

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std; const int maxn = 500+10;
int dp[2][maxn];
char s1[maxn], s2[maxn]; void LCS(int len1,int len2)
{
for(int i = 1; i <= len1; i++)
{
for(int j = 1; j <= len2; j++)
{
if(s1[i-1] == s2[j-1]) dp[i%2][j] = dp[(i-1)%2][j-1]+1;
else
{
int m1 = dp[(i-1)%2][j];
int m2 = dp[i%2][j-1];
dp[i%2][j] = max(m1, m2);
}
}
}
} int main()
{
while(scanf("%s%s", s1,s2) != EOF)
{
int len1 = strlen(s1);
int len2 = strlen(s2);
memset(dp,0,sizeof(dp)); LCS(len1, len2);
printf("%d\n", dp[len1%2][len2]);
}
}

hdu 1159 Common Subsequence 【LCS 基础入门】的更多相关文章

  1. hdu 1159 Common Subsequence(LCS最长公共子序列)

    Common Subsequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. HDU 1159 Common Subsequence (LCS)

    题意:给定两行字符串,求最长公共子序列. 析:dp[i][j] 表示第一串以 i 个结尾和第二个串以 j 个结尾,最长公共子序列,剩下的就简单了. 代码如下: #pragma comment(link ...

  3. HDU 1159 Common Subsequence

    HDU 1159 题目大意:给定两个字符串,求他们的最长公共子序列的长度 解题思路:设字符串 a = "a0,a1,a2,a3...am-1"(长度为m), b = "b ...

  4. HDU 1159 Common Subsequence 最长公共子序列

    HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...

  5. HDU 1159 Common Subsequence(裸LCS)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  6. hdu 1159 Common Subsequence(最长公共子序列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  7. HDU 1159 Common Subsequence 公共子序列 DP 水题重温

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  8. hdu 1159 Common Subsequence(最长公共子序列 DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...

  9. 题解报告:hdu 1159 Common Subsequence(最长公共子序列LCS)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Problem Description 给定序列的子序列是给定的序列,其中有一些元素(可能没有) ...

随机推荐

  1. 12v继电器驱动电路

  2. 查询清除SQL Server数据库备份还原历史记录

    曾经遇到过一个用户MSDB数据库非常大,让我帮忙查查是什么原因.使用sp_spaceused找出了所有表的数据大小,发现问题是SQL Server备份和还原历史表数据太大.用户经常会做日志备份,但是从 ...

  3. MooseFS管理

    一.goal(副本) 副本,在MFS中也被称为目标(Goal),它是指文件被复制的份数,设定目标值后可以通过mfsgetgoal命令来证实,也可以通过mfssetgoal命令来改变设定. 1 2 3 ...

  4. 第四篇: python函数续

    1.函数的嵌套 函数的嵌套调用:在调用一个函数的过程中,又调用了其它函数 示例1: def bar(): print('from nbar') def foo(): print('from foo') ...

  5. 13个实用的Apache Rewrite重写规则

    1.去掉域名中的www标记 复制代码 代码如下: RewriteCond %{HTTP_HOST} !^jb51\.net$ [NC]RewriteRule .? http://jb51.net%{R ...

  6. 在Windows下使用nmake+Makefile+编译ZThread库(附例子)

    ----------2015/01/09/23:21更新----------------------------------- 关于保留DEBUG信息的一个简单例子,见这篇随笔 ----------2 ...

  7. 关于appStore不显示构建版本的问题

    近日往AppStore上跟新一个版本,提交了好几次,每次都提交成功了,但是在iTunes Contacts上一直没有看到可选的构建版本,也没看到有邮件的反馈,纳闷了好久都不知道是什么鬼原因,后面发现是 ...

  8. Django1.6 +wsgi 部署到Apache2 的步骤。

    网上很多教程都是关于1.6之前的版本,很多都不适用,经历告诉我们最靠谱的还是官方文档. 一个Demo例子: 以 python shell开发的方式部署没有问题,但当独立部署到Apache2的过程非常艰 ...

  9. linux c log 日志接口

    #define SIZE_16M 16777216             //1024*1024*16 #define LOG_FILE_PATH "./mylog.txt"   ...

  10. quick-cocos2d-x 创建自定义lua绑定c++类

    内容主要参考 “在quick-cocos2d-x中添加自定义的类给lua使用” ( http://www.codeo4.cn/archives/746) 1. quick-coco2d-x 使用 to ...