内存限制:256 MiB时间限制:1500 ms标准输入输出
题目类型:传统评测方式:文本比较
上传者: hzwer

题目描述

给出一个长为 nn 的数列,以及 nn 个操作,操作涉及区间加法,询问区间内小于某个值 xx 的前驱(比其小的最大元素)。

输入格式

第一行输入一个数字 nn。

第二行输入 nn 个数字,第 ii 个数字为 a_iai​,以空格隔开。

接下来输入 nn 行询问,每行输入四个数字 \mathrm{opt}opt、ll、rr、cc,以空格隔开。

若 \mathrm{opt} = 0opt=0,表示将位于 [l, r][l,r] 的之间的数字都加 cc。

若 \mathrm{opt} = 1opt=1,表示询问 [l, r][l,r] 中 cc 的前驱的值(不存在则输出 -1−1)。

输出格式

对于每次询问,输出一行一个数字表示答案。

样例

样例输入

4
1 2 2 3
0 1 3 1
1 1 4 4
0 1 2 2
1 1 2 4

样例输出

3
-1

数据范围与提示

对于 100\%100% 的数据,1 \leq n \leq 100000, -2^{31} \leq \mathrm{others}1≤n≤100000,−231≤others、\mathrm{ans} \leq 2^{31}-1ans≤231−1。

代码:

 //#6279. 数列分块入门 3-区间加法,查询区间内小于某个值x的前驱(比其小的最大元素)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+; int n,m;
ll a[maxn],b[maxn],pos[maxn],tag[maxn]; void rechange(int x)
{
for(int i=(x-)*m+;i<=min(x*m,n);i++){
b[i]=a[i];
}
sort(b+(x-)*m+,b+min(x*m,n)+);
} void update(int l,int r,ll c)
{
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++)
a[i]+=c;
rechange(pos[l]);
}
else{
for(int i=l;i<=pos[l]*m;i++)
a[i]+=c;
rechange(pos[l]);
for(int i=pos[l]+;i<=pos[r]-;i++)
tag[i]+=c;
for(int i=(pos[r]-)*m+;i<=r;i++)
a[i]+=c;
rechange(pos[r]);
}
} ll query(int l,int r,ll c)
{
ll ans=-;
if(pos[l]==pos[r]){
for(int i=l;i<=r;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
}
else{
for(int i=l;i<=pos[l]*m;i++){
if(a[i]+tag[pos[l]]<c){
ans=max(ans,a[i]+tag[pos[l]]);
}
}
for(int i=pos[l]+;i<=pos[r]-;i++){
int cnt=c-tag[i];
int ret=lower_bound(b+(i-)*m+,b+i*m+,cnt)-b-;
//cout<<ret<<" "<<(i-1)*m<<endl;
if(ret!=(i-)*m)
ans=max(ans,b[ret]+tag[i]);
}
for(int i=(pos[r]-)*m+;i<=r;i++){
if(a[i]+tag[pos[r]]<c){
ans=max(ans,a[i]+tag[pos[r]]);
}
}
}
return ans;
} int main()
{
scanf("%d",&n);
m=sqrt(n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
b[i]=a[i];
pos[i]=(i-)/m+;
}
for(int i=;i<=m+;i++)
sort(b+(i-)*m+,b+min(i*m,n)+);
for(int i=;i<=n;i++){
int op,l,r;
ll c;
scanf("%d%d%d%lld",&op,&l,&r,&c);
if(op==){
update(l,r,c);
}
else{
printf("%lld\n",query(l,r,c));
}
}
} /*
10
1 3 4 2 5 7 11 3 5 1
0 1 5 1
1 1 7 2
0 3 9 1
1 4 8 7
1 1 10 6
1 3 5 3
1 5 10 7
1 6 10 6
1 2 7 4
1 2 7 5 -1
4
4
-1
6
4
-1
4
*/

LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))的更多相关文章

  1. #6279. 数列分块入门 3(询问区间内小于某个值 xx 的前驱(比其小的最大元素))

    题目链接:https://loj.ac/problem/6279 题目大意:中文题目 具体思路:按照上一个题的模板改就行了,但是注意在整块查找的时候的下标问题. AC代码: #include<b ...

  2. LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)

    #6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论   题目描述 给出一个 ...

  3. LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)

    #6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6   题目描述 给出 ...

  4. LOJ-6279-数列分块入门3(分块, 二分)

    链接: https://loj.ac/problem/6279 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的前驱(比其小的最大元素). 思路: 同样的分块加二 ...

  5. LOJ-6278-数列分块入门2(分块)

    链接: https://loj.ac/problem/6278 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,询问区间内小于某个值 的元素个数. 思路: 分块,用vector维护每个区 ...

  6. LOJ.6284.数列分块入门8(分块)

    题目链接 \(Description\) 给出一个长为n的数列,以及n个操作,操作涉及区间询问等于一个数c的元素,并将这个区间的所有元素改为c. \(Solution\) 模拟一些数据可以发现,询问后 ...

  7. LOJ-6277-数列分块入门1(分块)

    链接: https://loj.ac/problem/6277 题意: 给出一个长为 的数列,以及 个操作,操作涉及区间加法,单点查值. 思路: 线段树可以解决,用来学习分块. 分块概念就是,将序列分 ...

  8. 牛客练习赛52 B题【树状数组维护区间和{查询区间和,如果区间元素重复出现则计数一次}】补题ing

    [题目] 查询区间和,如果区间元素重复出现则计数一次. 链接:https://ac.nowcoder.com/acm/contest/1084/B [题解] 将询问按r排序,维护每个数最后出现的位置, ...

  9. LOJ 6279 数列分块入门3

    嗯... 题目链接:https://loj.ac/problem/6279 这道题在分块的基础上用vc数组记录,然后最后分三块,两边暴力枚举找前驱,中间lower_bound找前驱. AC代码: #i ...

随机推荐

  1. java 课后作业

    杨辉三角 组合数 public class YH { public static void main(String agrs[]) { int a[5][5],i,j; for(i = 0;i < ...

  2. JVM之字节码执行引擎

    方法调用: 方法调用不同于方法执行,方法调用阶段唯一任务就是确定被调用方法的版本(即调用哪一个方法),暂时还不执行方法内部的具体过程.方法调用有,解析调用,分派调用(有静态分派,动态分派). 方法解析 ...

  3. Babel 和 PostCss 的一些基本配置

    Babel 是一个javascript编译器,PostCSS 是一个样式转换工具.两者都可以看作是一个转化平台,我们可以在上面使用一些插件,来达到想要的代码转化.几乎每个前端项目都要使用它们. Bab ...

  4. emqtt新版升级一些事项和操作

    注解 Erlang/OTP R19依赖lksctp-tools库 yum install lksctp-tools 控制台地址: http://127.0.0.1:18083,默认用户: admin, ...

  5. 图论&数学:矩阵树定理

    运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...

  6. vijos 1153 背包+标记

    描述 新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只能造机枪兵. 比赛开始了, ...

  7. [Luogu 1160] 队列安排

    Luogu 1160 队列安排 链表H2O H2O H2O模板. 太久不写链表,忘干净了,竟调了半个晚上. 保留备用. #include <cstdio> #include <cst ...

  8. mvc Dapper_Report_Down_ExcelFile

    一.基于Aspose.Cells.Dapper导出Excel Dapper的Query返回要不是对象的IEnumerable,要不是Dynamic的IEnumerable,都不适合不用反射就能够动态获 ...

  9. IntentServicce;Looper;long-running task

    7. If you want to carry on a long-running task, what do you need to do? IntentService:Service Servic ...

  10. 【HDU】6148 Valley Numer 数位DP

    [算法]数位DP [题意]定义V-number为从左到看单位数字未出现先递增后递减现象的数字,求0~N中满足条件的数字个数.T<=200,lenth(n)<=100 [题解]百度之星201 ...