[BZOJ4003][JLOI2015]城池攻占(左偏树)
这题有多种做法,一种是倍增预处理出每个点往上走2^i步最少需要的初始战斗力,一种是裸的启发式合并带标记splay。
每个点合并能攻占其儿子的所有骑士,删去所有无法攻占这个城市的骑士并记录答案。
注意到splay每次实际上只需要取出最小的元素判断是否牺牲,这显然可以用堆维护。
关于可并堆打标记:和线段树打标记一样,维护乘法标记a和加法标记b,所有元素表示为ax+b,用同样的方法下传。
注意merge前要先push。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
#define For(i,x) for (int i=h[x],k; i; i=nxt[i])
typedef long long ll;
using namespace std; const int N=;
int n,m,cnt,a[N],fa[N],rt[N],bg[N],ed[N],ls[N],rs[N],dis[N],dep[N],dead[N],to[N],nxt[N],h[N];
ll mul[N],plu[N],v[N],p[N],d[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void put(int x,ll a,ll b){
if (!x) return;
v[x]=v[x]*a+b; mul[x]*=a; plu[x]=plu[x]*a+b;
} void push(int x){
put(ls[x],mul[x],plu[x]); put(rs[x],mul[x],plu[x]);
mul[x]=; plu[x]=;
} int merge(int x,int y){
if (!x || !y) return x+y;
push(x); push(y);
if (v[x]>v[y]) swap(x,y);
rs[x]=merge(rs[x],y);
if (dis[ls[x]]<dis[rs[x]]) swap(ls[x],rs[x]);
dis[x]=dis[rs[x]]+; return x;
} int pop(int x){ push(x); return merge(ls[x],rs[x]); } void dfs(int x,int fa){
dep[x]=dep[fa]+;
For(i,x) dfs(k=to[i],x),rt[x]=merge(rt[x],rt[k]);
while (rt[x] && v[rt[x]]<d[x])
dead[x]++,ed[rt[x]]=x,rt[x]=pop(rt[x]);
if (!a[x]) put(rt[x],,p[x]); else put(rt[x],p[x],);
} int main(){
freopen("bzoj4003.in","r",stdin);
freopen("bzoj4003.out","w",stdout);
scanf("%d%d",&n,&m);
rep(i,,n) scanf("%lld",&d[i]);
rep(i,,n) scanf("%d%d%lld",&fa[i],&a[i],&p[i]),add(fa[i],i);
rep(i,,m) mul[i]=,scanf("%lld%d",&v[i],&bg[i]),rt[bg[i]]=merge(rt[bg[i]],i);
dfs(,);
rep(i,,n) printf("%d\n",dead[i]);
rep(i,,m) printf("%d\n",dep[bg[i]]-dep[ed[i]]);
return ;
}
[BZOJ4003][JLOI2015]城池攻占(左偏树)的更多相关文章
- BZOJ4003 [JLOI2015]城池攻占 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4003 题意概括 题意有点复杂,直接放原题了. 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑 ...
- [JLOI2015]城池攻占 左偏树
题目描述 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的管辖,其中 fi &l ...
- [luogu3261 JLOI2015] 城池攻占 (左偏树+标记)
传送门 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池.这 n 个城池用 1 到 n 的整数表示.除 1 号城池外,城池 i 会受到另一座城池 fi 的 ...
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
- BZOJ 4003 / Luogu P3261 [JLOI2015]城池攻占 (左偏树)
左偏树裸题,在树上合并儿子传上来的堆,然后小于当前结点防御值的就pop掉,pop的时候统计答案. 修改的话就像平衡树一样打懒标记就行了. 具体见代码 CODE #include<bits/std ...
- bzoj 4003 [JLOI2015]城池攻占 —— 左偏树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4003 其实蛮简单的,首先一个城市只会被其子树中的骑士经过,启发我们 dfs 序用可并堆合并子 ...
- bzoj 4003: 城池攻占 左偏树
题目大意 http://www.lydsy.com/JudgeOnline/problem.php?id=4003 题解 一开始看漏条件了 题目保证当占领城池可以使攻击力乘上\(v_i\)时,一定有\ ...
- BZOJ4003 JLOI2015城池攻占
用左偏树模拟攻占的过程,维护最小值,最多入和出m次,每次log复杂度. #include<bits/stdc++.h> using namespace std; ; typedef lon ...
随机推荐
- 省队集训 Day3 吴清华
[题目大意] 给网格图,共有$n * n$个关键节点,横向.纵向距离均为$d$,那么网格总长度和宽度均为$(n+1) * d + 1$,最外围一圈除了四角是终止节点.要求每个关键节点都要通过线连向终止 ...
- 「6月雅礼集训 2017 Day5」吃干饭
[题目大意] 询问[L,R]中选若干个数异或起来得到的答案集合大小.多组数据. 对于50%的数据,$R - L \leq 10^4$ 对于100%的数据,$R - L \leq 10^{18}, T ...
- 【BZOJ】1585: [Usaco2009 Mar]Earthquake Damage 2 地震伤害
[题意]给定无向图,现在可能有一些点已经被删除,只给出信息是c个点未被删除且不能到达结点1,求最少的删除点个数. [算法]最小割 [题解]本题和1的区别是:1求的是最少的不能到达1的结点数,那么就把损 ...
- 【51NOD】消灭兔子
[算法]贪心 #include<cstdio> #include<algorithm> #include<cstring> #include<queue> ...
- MYSQL查找总结
a.条件判断where select * from 表 where id > 1 and name != 'alex' and num = 12; select * from 表 where ...
- 聂老师的考验(反向bfs)
题目链接:http://113.240.233.2:8081/JudgeOnline/problem.php?id=1121 这个题看起来要多次使用bfs,其实只要换个思维就会发现这就是一个简单的bf ...
- JavaScript字符串逆序
如何对字符串进行倒序呢?你首先想到的方法就是生成一个栈,从尾到头依次取出字符串中的字符压入栈中,然后把栈连接成字符串. var reverse = function( str ){ var stack ...
- web-project 故障修复功能 传递所有的event_id数据到后台
<script language=javascript> function IdentifyRepair(event_id) { var url; url = "/View/fa ...
- 如何入门 Python 爬虫?
作者:谢科 来源:知乎链接:https://www.zhihu.com/question/20899988/answer/24923424 著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- 【Windows使用笔记】使Onedrive同步任意文件夹
因为度盘实在是有点垃圾,经常看的剧之类的或者其他软件资源啥的动不动就被封. 所以跑去某宝买了一个5T的企业子账号,安全性不清楚,重要的隐私数据反正都用移动硬盘备份了.主要就是存一些资源性的文件吧.而且 ...