一张n个点m条边的无向图,有点权有边权都是非负,且每条边的权值小于等于两个顶点的权值和,现在要将每个点减一个非负整数使得每条边权等于两个顶点的点权和,问最大修改代价和最小修改代价

思路神的一匹,完全想不出来,对着题解想了半天才有点理解

首先有一个小结论:对于一个联通块,如果一个顶点的值确定了,其余顶点的值都能确定。这是显然的,因为直接用一条边的边权减去已知点权就是另一个点的权值。如果我们设一个点的权值为x,与之相连的边权为w,另一点点权即为w-x

这样的话其实整个联通块内所有的点权都可以表示成y=k*x+b(k∈(-1,1))的形式,我们对于解一下关于y的不等式即可

特别注意的是,如果图中存在奇环,那么某个点会存在两种系数不同的表示,这时我们直接解这个方程就可以求出x的唯一解

这时我们还得保证x解出来为整数,这也是做这个题目要注意的的一点

代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib>
#define N 300010
#define M 5000010
#define ll long long
using namespace std;
queue<int>qx,qy; int n,m,num;
int head[N],val[N],q[N];
bool vis[N][];
ll ans1,ans2,v[N][]; int read()
{
char ch=getchar(); int f=,x=;
while(ch>''||ch<'') {if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x*f;
} struct point{
int next,to,dis;
}e[M<<]; void add(int from,int to,int dis)
{
e[++num].next=head[from];
e[num].to=to;
e[num].dis=dis;
head[from]=num;
} void bfs(int x)
{
vis[x][]=;
qx.push(x); qy.push();
int tot=; q[++tot]=x;
while(!qx.empty())
{
int a=qx.front(),b=qy.front();
qx.pop(); qy.pop();
for(int i=head[a];i;i=e[i].next)
{
int to=e[i].to;
if(!vis[to][]&&!vis[to][]) q[++tot]=to;
if(vis[to][b^])
{
if(v[to][b^]!=e[i].dis-v[a][b]) {printf("NIE"); exit();}
}
else
{
vis[to][b^]=,v[to][b^]=e[i].dis-v[a][b];
qx.push(to); qy.push(b^);
}
}
}
ll L=,R=val[x],sum1=,sum2=;
for(int i=;i<=tot;i++)
{
int a=q[i];
if(vis[a][]) L=max(L,-v[a][]),R=min(R,val[a]-v[a][]);
if(vis[a][]) L=max(L,v[a][]-val[a]),R=min(R,v[a][]);
if(vis[a][]&&vis[a][])
{
if((v[a][]-v[a][])&) {printf("NIE"); exit();}
L=max(L,(v[a][]-v[a][])>>);
R=min(R,(v[a][]-v[a][])>>);
}
}
if(L>R) {printf("NIE"); exit();}
for(int i=;i<=tot;i++)
{
int a=q[i];
if(vis[a][]) sum1+=val[a]-L-v[a][],sum2+=val[a]-R-v[a][];
else sum1+=val[a]+L-v[a][],sum2+=val[a]+R-v[a][];
}
if(sum1>sum2) swap(sum1,sum2);
ans1+=sum1,ans2+=sum2;
} int main()
{
n=read(); m=read();
for(int i=;i<=n;i++) val[i]=read();
for(int i=;i<=m;i++)
{
int x=read(),y=read(),z=read();
add(x,y,z); add(y,x,z);
}
for(int i=;i<=n;i++)
if(!vis[i][]&&!vis[i][])
bfs(i);
printf("%lld %lld",ans1,ans2);
return ;
}

[POI2012] BEZ-Minimalist Security的更多相关文章

  1. 【BZOJ2801】[Poi2012]Minimalist Security BFS

    [BZOJ2801][Poi2012]Minimalist Security Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i),并且对于 ...

  2. bzoj 2801 [Poi2012]Minimalist Security 设一个,求出所有

    题目大意 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i), 并且对于每条边(u,v)都满足p(u)+p(v)>=w(u,v). 现在要将顶点i的权值减去 ...

  3. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. BZOJ_2801_[Poi2012]Minimalist Security_dfs树+特判+乱搞

    BZOJ_2801_[Poi2012]Minimalist Security_dfs树+特判+乱搞 Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有 ...

  6. BZOJ2801/洛谷P3544 [POI2012]BEZ-Minimalist Security(题目性质发掘+图的遍历+解不等式组)

    题面戳这 化下题面给的式子: \(z_u+z_v=p_u+p_v-b_{u,v}\) 发现\(p_u+p_v-b_{u,v}\)是确定的,所以只要确定了一个点\(i\)的权值\(x_i\),和它在同一 ...

  7. POI2012 BEZ-Minimalist Security | noi.ac #537 Graph

    题目链接:戳我 首先注意这张图有可能不连通!! 然后我们考虑对于每一个联通块,首先任意确定一个点,给它设最终值为x,然后进行搜索.(因为对于一个联通块而言,我们知道一个点的最终值,那么整个联通块上面点 ...

  8. Security Policy:行级安全(Row-Level Security)

    行级安全RLS(Row-Level Security)是在数据行级别上控制用户的访问,控制用户只能访问数据库表的特定数据行.断言是逻辑表达式,在SQL Server 2016中,RLS是基于安全断言( ...

  9. Content Security Policy 入门教程

    阮一峰文章:Content Security Policy 入门教程

随机推荐

  1. zoj3659(经典并查集)

    这种思想很经典. 从最小的边选择,那么可以知道的是,在除去这条边的另外两个联通块,选其中一块中的点做为源点到另一块所得到的费用和. 如果你已经知道了这两个联通块内部选一个点时的最大费用和.那么这题就可 ...

  2. EXCEL自动导出HTML

    话说博主我以前总是为资料共享的问题发愁,刚才鼓捣了一下EXCEL.发现有个功能还是不错的'发布' 以OFFICE2013为标准吧. 点击文件--导出-- 更改文件类型---另存为--(网页)htm 点 ...

  3. 160621、Java注解教程及自定义注解

    Java注解提供了关于代码的一些信息,但并不直接作用于它所注解的代码内容.在这个教程当中,我们将学习Java的注解,如何定制注解,注解的使用以及如何通过反射解析注解. Java1.5引入了注解,当前许 ...

  4. 《挑战程序设计竞赛》2.6 数学问题-素数 AOJ0009 POJ3126 3421 3292 3641

    AOJ0009 http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=0009 题意 求不大于n的素数个数. 思路 素数筛法可解,筛法过程中 ...

  5. Oracle是如何工作的?实例是如何响应用户请求?一条SQL的执行过程~

    Oracle 是如何工作的? Select id,name from t order by id ; – SQL 解析(查看语法是否错误,如果没有错误,分析语意,执行此语句的权限) – 执行计划(OR ...

  6. Spring MVC 框架结构介绍(二)

    Spring MVC框架结构 Spring MVC是围绕DispatcherServlet设计的,DispatcherServlet向处理程序分发各种请求.处理程序默认基于@Controller和@R ...

  7. 深入理解Java内存模型之系列篇

    深入理解Java内存模型(一)——基础 并发编程模型的分类 在并发编程中,我们需要处理两个关键问题:线程之间如何通信及线程之间如何同步(这里的线程是指并发执行的活动实体).通信是指线程之间以何种机制来 ...

  8. ArcGIS runtime sdk for wpf 授权

    这两天由于runtime sdk for wpf的授权和runtime sdk 其他产品的授权的不一样导致自己混乱不堪. 总结下吧. sdk 简介 当前ArcGIS runtime sdk 包括一系列 ...

  9. eclipse欺骗了我

    Java源文件(.java)和Java的字节码文件(.class)跟 package 是个什么关系? 平时使用 eclipse 的时候,发现 .java 文件目录必须和 package 包名保持一致, ...

  10. Django继承

    Django目前支持两种不同的继承方式,包括抽象基础类和多表继承. 1.抽象基础类: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 cla ...