【斜率优化】bzoj3675-[Apio2014]序列分割&&Uoj104
题目大意
将一个长度为N的非负整数序列分割成k+l个非空的子序列,每次选择一位置分割后,将会得到一定的分数,这个分数为两个新序列中元素和的乘积。求最大的分数。
[UOJ104]并输出任意一种方案
思路
显然,无论分割顺序如何,不会影响最后得到的结果。所以可以利用递推方程。\(f[i][j]\)表示取前\(i\)个数,分割成\(j\)个序列能得到的最大分数。显然有:
\]
当\(Ans_{j_1}>Ans_{j_2}\)时,有:
\]
\]
\]
令\(x[i]=f[i][k-1]-sum[i]^2,y[i]=sum[i]\)
则有:
\]
注意点
计算斜率的时候\(x_1\)可能等于\(x_2\),特判一下将斜率设为INF或-INF。不要忘记开long long。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAXN=100100;
const int MAXK=250;
int n,k;
LL sum[MAXN],x[2][MAXN],g[MAXN],y[MAXN],f[MAXN][2];
int cur;
void init()
{
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
{
int tmp;
scanf("%d",&tmp);
y[i]=sum[i]=sum[i-1]+tmp;
g[i]=-y[i];
}
}
LL dp()
{
memset(f,0,sizeof(f));
cur=0;
for (int i=1;i<=n;i++) x[1-cur][i]=f[i][cur]-(sum[i]*sum[i]);
for (int j=2;j<=k+1;j++)
{
cur=1-cur;
int head=0,tail=1,que[MAXN];
for (int i=j-1;i<=n;i++)//上一次至多分割为j-1部分,则至少从j-1开始
{
while (head+1<tail && x[cur][que[head]]-x[cur][que[head+1]]<=g[i]*(y[que[head]]-y[que[head+1]])) head++;
int best=que[head];
f[i][cur]=f[best][1-cur]+sum[best]*(sum[i]-sum[best]);
while (head+1<tail && (LL)(x[cur][que[tail-1]]-x[cur][i])*(y[que[tail-2]]-y[que[tail-1]])>=(LL)(x[cur][que[tail-2]]-x[cur][que[tail-1]])*(y[que[tail-1]]-y[i])) tail--;
que[tail++]=i;
x[1-cur][i]=f[i][cur]-(sum[i]*sum[i]);
}
}
return (f[n][cur]);
}
void printans()
{
printf("%lld\n",dp());
}
int main()
{
init();
printans();
return 0;
}
输出方案
只需记录一下路径就好了。不过要注意,UOJ后面数据时间卡得非常可啪,所以我们不用斜率而是直接用乘法来计算,同时x数组y数组g数组也不要了直接套进去算,勉勉强强卡过了……[痛心疾首.jpg]
顺带一提的是,这样的话BZOJ会T(咦?)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAXN=100100;
const int MAXK=250;
int n,k;
LL sum[MAXN],f[MAXN][2],fr[MAXN][MAXK];
int cur;
void init()
{
scanf("%d%d",&n,&k);
for (int i=1;i<=n;i++)
{
int tmp;
scanf("%d",&tmp);
sum[i]=sum[i-1]+tmp;
}
}
LL x(int m)
{
return f[m][1-cur]-sum[m]*sum[m];
}
LL dp()
{
memset(f,0,sizeof(f));
cur=0;
for (int j=2;j<=k+1;j++)
{
cur=1-cur;
int head=0,tail=1,que[MAXN];
for (int i=j-1;i<=n;i++)//上一次至多分割为j-1部分,则至少从j-1开始
{
while (head+1<tail && (f[que[head]][1-cur]-(LL)(sum[que[head]]*sum[que[head]])-f[que[head+1]][1-cur]+(LL)(sum[que[head+1]]*sum[que[head+1]])<=(LL)-sum[i]*(sum[que[head]]-sum[que[head+1]]))) head++;
int best=que[head];
f[i][cur]=f[best][1-cur]+sum[best]*(sum[i]-sum[best]);
fr[i][j]=best;
while (head+1<tail && (LL)(x(que[tail-1])-x(i))*(sum[que[tail-2]]-sum[que[tail-1]])>=(LL)(x(que[tail-2])-x(que[tail-1]))*(sum[que[tail-1]]-sum[i])) tail--;
que[tail++]=i;
}
}
return (f[n][cur]);
}
void printans()
{
printf("%lld\n",dp());
int ans[MAXK];
memset(ans,0,sizeof(ans));//不要忘记初始化★
for (int i=k+1;i>=2;i--)
{
ans[++ans[0]]=fr[n][i];
n=fr[n][i];
}
for (int i=ans[0];i>=1;i--) printf("%d ",ans[i]);
}
int main()
{
init();
printans();
return 0;
}
【斜率优化】bzoj3675-[Apio2014]序列分割&&Uoj104的更多相关文章
- bzoj3675[Apio2014]序列分割 斜率优化dp
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3508 Solved: 1402[Submit][Stat ...
- [Bzoj3675][Apio2014]序列分割(斜率优化)
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4021 Solved: 1569[Submit][Stat ...
- BZOJ3675 [Apio2014]序列分割 【斜率优化dp】
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MB Submit: 3366 Solved: 1355 [Submit][St ...
- BZOJ3675 [Apio2014]序列分割 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8697258.html 题目传送门 - BZOJ3675 题意 对于一个非负整数序列,小H需要重复k次以下的步骤: ...
- BZOJ3675: [Apio2014]序列分割(斜率优化)
Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4186 Solved: 1629[Submit][Status][Discuss] Descript ...
- 2018.09.29 bzoj3675: [Apio2014]序列分割(斜率优化dp)
传送门 斜率优化dp经典题目. 首先需要证明只要选择的K个断点是相同的,那么得到的答案也是相同的. 根据分治的思想,我们只需要证明有两个断点时成立,就能推出K个断点时成立. 我们设两个断点分成的三段连 ...
- BZOJ3675 Apio2014 序列分割 【斜率优化】
Description 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列分割成k+1个非空的子序列.为了得到k+1个子序列,小H需要重复k次以下的步骤: 1.小H首 ...
- [luogu3648][bzoj3675][APIO2014]序列分割【动态规划+斜率优化】
题目大意 让你把一个数列分成k+1个部分,使分成乘积分成各个段乘积和最大. 分析 首先肯定是无法开下n \(\times\) n的数组,那么来一个小技巧:因为我们知道k的状态肯定是从k-1的状态转移过 ...
- bzoj3675: [Apio2014]序列分割
留坑 为什么别人家的斜率优化跟我一点都不一样! 为什么斜率都要变成正的... 为什么要那么推式子 为什么不能直接做啊..... 为什么不把0去掉去秒WA啊 为什么叉积去了0也过不了啊 woc啊 #in ...
随机推荐
- 火狐浏览器下点击a标签时出现虚线的解决方案
1.兼容性问题 火狐浏览器下点击a标签时出现虚线 2.解决方案 a:focus { outline: none;}
- 【shell】shell中各种括号的作用()、(())、[]、[[]]、{}
一.小括号,圆括号() 1.单小括号 () ①命令组.括号中的命令将会新开一个子shell顺序执行,所以括号中的变量不能够被脚本余下的部分使用.括号中多个命令之间用分号隔开,最后一个命令可以没有 ...
- JS中的日期内置函数
用JS中的日期内置函数实现在页面显示:“今天是:2013年9月26日14:32:45”. var date=new Date(Date.parse('9/26/2013 14:32:45')); ...
- Linux汇编教程04:寻址方式
这一节,我们主要来讨论寻址方式,这一点十分重要. 我们上一节有稍微提了一下,内存地址引用的通用格式: 地址或偏移(%基址寄存器, %索引寄存器, 比例因子 ) 结果地址 = 地址或偏移 + %基址寄存 ...
- VPS性能综合测试(7):服务器压力测试,VPS系统负载测试
1.可能有的VPS主机使用性能测评工具得出的结果很优秀,但是最终运用到实际生产时却发现VPS主机根本无法承受理论上应该达到的流量压力,这时我们就不得不要怀疑VPS商是不是对VPS主机的参数进行了“篡改 ...
- python爬虫实战——5分钟做个图片自动下载器
python爬虫实战——图片自动下载器 制作爬虫的基本步骤 顺便通过这个小例子,可以掌握一些有关制作爬虫的基本的步骤. 一般来说,制作一个爬虫需要分以下几个步骤: 分析需求(对,需求分析非常重要, ...
- tornado 模版
tornado 模版语法 取消转义 : 取消项目转义 :autoescape = None 取消模版转义:{% autoescape None %} 取消行转义 :{% raw bd %} 强制转 ...
- JavaScript中对象的属性类型
JavaScript中,对象的属性有两种:数据属性和访问器属性. 数据属性 特性: 数据属性包括一个数据值的位置.在这个位置可以读取和写入值.数据属性有4个特性. [[configurable]]:可 ...
- 14:django 用户认证系统
django认证系统包含三个部分:用户.权限和分组 安装 django项目默认启用了认证系统,如果不是使用django-admin.py创建项目的可以通过在settings配置文件里面的INSTALL ...
- 辨析各类web服务器:Apache/Tomcat/Jboss/Nginx/等,还有Nodejs
先说一下各类服务器能干啥,特点是啥,然后在区分他们的类别. (1)Apache: Apache是指Apache软件基金会的Apache HTTP Server, 它能够接收http请求,然后返回各类资 ...