【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣
Fleury算法看这里 http://hihocoder.com/problemset/problem/1181
把每个点看成边,每个横纵坐标看成一个点,得到一个无向图.
如果新图中每个点的度都是偶数,那么就是一个欧拉图,对该图跑一遍欧拉回路,对走过的边轮流染色,就可以保证每个点所连的边的红蓝颜色相等.
如果存在度数为奇数的点,新建两个点a和b.把横坐标的度数为奇数的点和a连边,把纵坐标为奇数的点和b连边,这样最多只有a和b的度数为奇数,可以跑欧拉路径.
注意Fleury算法的时候,要及时把访问过的边从图中删去(真的删去而不是打标记),否则重复访问会导致复杂度飙升。
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
struct Edge{
int v,id;
};
vector<Edge>G[400010];
int n,S,T;
bool anss[200010],pen,vis[600010];
inline void dfs(int U){
while(!G[U].empty()){
Edge e=G[U].back();
G[U].pop_back();
if(!vis[e.id]){
vis[e.id]=1;
dfs(e.v);
if(e.id<=n){
anss[e.id]=pen;
pen^=1;
}
}
}
}
int main(){
// freopen("c.in","r",stdin);
int x,y;
scanf("%d",&n);
S=400001; T=400002;
for(int i=1;i<=n;++i){
scanf("%d%d",&x,&y);
G[x].push_back((Edge){y+200000,i});
G[y+200000].push_back((Edge){x,i});
}
int cnt=n;
for(int i=1;i<=200000;++i){
if(G[i].size()&1){
G[S].push_back((Edge){i,++cnt});
G[i].push_back((Edge){S,cnt});
}
}
for(int i=200001;i<=400000;++i){
if(G[i].size()&1){
G[i].push_back((Edge){T,++cnt});
G[T].push_back((Edge){i,cnt});
}
}
if(G[S].size()&1){
dfs(S);
}
if(!G[T].empty()){
dfs(T);
}
for(int i=1;i<=200000;++i){
if(!G[i].empty()){
dfs(i);
}
}
for(int i=1;i<=n;++i){
putchar(anss[i] ? 'r' : 'b');
}
puts("");
return 0;
}
【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣的更多相关文章
- 【欧拉回路】【Fleury算法】CDOJ1642 老当益壮, 宁移白首之心?
题意: 构造一个01串,使得满足以下条件: 1. 环状(即首尾相连) 2. 每一位取值为0或1 3. 长度是2^n 4. 对于每个(2^n个)位置,从其开始沿逆时针方向的连续的n位01串(包括自己) ...
- Fleury算法 求欧拉回路
Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...
- 欧拉回路&欧拉路径学习笔记
基础性质(用来判定): 1.无向图欧拉回路没有奇数点 (有向图所有点入度等于出度) 2.无向图欧拉路径只有两个奇数点 (有向图有一个顶点入度比出度大1,有一个顶点出度比入度大1,其他的全相等) 3.图 ...
- hiho欧拉路·二 --------- Fleury算法求欧拉路径
hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...
- Fleury算法求欧拉路径
分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...
- HihoCoder1181欧拉路(Fleury算法求欧拉路径)
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
- 欧拉回路 & 欧拉路径
欧拉路径 & 欧拉回路 概念 欧拉路径: 如果图 G 种的一条路径包括所有的边,且仅通过一次的路径. 欧拉回路: 能回到起点的欧拉路径. 混合图: 既有无向边又有无向边的图. 判定 无向图 一 ...
- UVA10054-The Necklace(无向图欧拉回路——套圈算法)
Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...
- The Best Path HDU - 5883(欧拉回路 && 欧拉路径)
The Best Path Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
随机推荐
- Django【进阶】分页功能Pagination
项目中,我们需要很多非业务逻辑的功能,例如分页功能,而且此类功能移植性很好,可以在不同的项目中使用,所以整理好这些功能会一定程度上提高开发效率,下面是分页功能代码,使用时,可单独放在utils目录 & ...
- •搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机
本节所讲内容: 实战:搭建LAMP环境及快速部署双网站并实现基于域名的虚拟主机 LAMP架构:??? Linux+Apache+Mysql+PHP Linux+Apache+Mysql/MariaDB ...
- Linux中查看进程占用内存的情况【转】
转自:http://hutaow.com/blog/2014/08/28/display-process-memory-in-linux/ Linux中查看某个进程占用内存的情况,执行如下命令即可,将 ...
- Laravel 5.2 数据库迁移和数据填充
一.数据库迁移 Laravel 的数据库迁移提供了对数据库.表.字段.索引的一系列相关操作.下面以创建友情链接表为例. 1. 创建迁移 使用 Artisan 命令 php artisan make: ...
- 64_f1
FUR-0.4.6-13.fc26.x86_64.rpm 13-Feb-2017 23:32 45882 Falcon-0.9.6.8-11.fc26.i686.rpm 13-Feb-2017 23: ...
- java 和 JVM
C++和Java的区别 指针:java中不存在指针的概念,编程者无法直接通过指针来直接访问内存,有利于维护java程序的安全 多重继承:C++支持多重继承,java不支持多重继承,但是允许一个类继承多 ...
- zookeeper安装和搭建集群方式(window)
1. 概述 ZooKeeper是Hadoop的正式子项目,它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.名字服务.分布式同步.组服务等.ZooKeeper的目标就是封装好复杂 ...
- Android端与Android端利用WIFI进行FTP通信
一.客户端通信工具类: import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; im ...
- jQuery通过Ajax向PHP服务端发送请求并返回JSON数据
SON(JavaScript Object Notation) 是一种轻量级的数据交换格式.易于人阅读和编写,同时也易于机器解析和生成.JSON在前后台交互的过程中发挥着相当出色的作用.请接着往下看教 ...
- java中的i++与++i有什么区别?
刚开始接触时,做了一些小测试,还以为这两个没有什么区别. public class OperatorDemo { public static void main(String[] args){ int ...