【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣
Fleury算法看这里 http://hihocoder.com/problemset/problem/1181

把每个点看成边,每个横纵坐标看成一个点,得到一个无向图.
如果新图中每个点的度都是偶数,那么就是一个欧拉图,对该图跑一遍欧拉回路,对走过的边轮流染色,就可以保证每个点所连的边的红蓝颜色相等.
如果存在度数为奇数的点,新建两个点a和b.把横坐标的度数为奇数的点和a连边,把纵坐标为奇数的点和b连边,这样最多只有a和b的度数为奇数,可以跑欧拉路径.



注意Fleury算法的时候,要及时把访问过的边从图中删去(真的删去而不是打标记),否则重复访问会导致复杂度飙升。
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
struct Edge{
int v,id;
};
vector<Edge>G[400010];
int n,S,T;
bool anss[200010],pen,vis[600010];
inline void dfs(int U){
while(!G[U].empty()){
Edge e=G[U].back();
G[U].pop_back();
if(!vis[e.id]){
vis[e.id]=1;
dfs(e.v);
if(e.id<=n){
anss[e.id]=pen;
pen^=1;
}
}
}
}
int main(){
// freopen("c.in","r",stdin);
int x,y;
scanf("%d",&n);
S=400001; T=400002;
for(int i=1;i<=n;++i){
scanf("%d%d",&x,&y);
G[x].push_back((Edge){y+200000,i});
G[y+200000].push_back((Edge){x,i});
}
int cnt=n;
for(int i=1;i<=200000;++i){
if(G[i].size()&1){
G[S].push_back((Edge){i,++cnt});
G[i].push_back((Edge){S,cnt});
}
}
for(int i=200001;i<=400000;++i){
if(G[i].size()&1){
G[i].push_back((Edge){T,++cnt});
G[T].push_back((Edge){i,cnt});
}
}
if(G[S].size()&1){
dfs(S);
}
if(!G[T].empty()){
dfs(T);
}
for(int i=1;i<=200000;++i){
if(!G[i].empty()){
dfs(i);
}
}
for(int i=1;i<=n;++i){
putchar(anss[i] ? 'r' : 'b');
}
puts("");
return 0;
}
【欧拉回路】【欧拉路径】【Fleury算法】CDOJ1634 记得小苹初见,两重心字罗衣的更多相关文章
- 【欧拉回路】【Fleury算法】CDOJ1642 老当益壮, 宁移白首之心?
题意: 构造一个01串,使得满足以下条件: 1. 环状(即首尾相连) 2. 每一位取值为0或1 3. 长度是2^n 4. 对于每个(2^n个)位置,从其开始沿逆时针方向的连续的n位01串(包括自己) ...
- Fleury算法 求欧拉回路
Fleury算法 #include <iostream> #include <cstdio> #include <cstring> #include <cma ...
- 欧拉回路&欧拉路径学习笔记
基础性质(用来判定): 1.无向图欧拉回路没有奇数点 (有向图所有点入度等于出度) 2.无向图欧拉路径只有两个奇数点 (有向图有一个顶点入度比出度大1,有一个顶点出度比入度大1,其他的全相等) 3.图 ...
- hiho欧拉路·二 --------- Fleury算法求欧拉路径
hiho欧拉路·二 分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇 ...
- Fleury算法求欧拉路径
分析: 小Ho:这种简单的谜题就交给我吧! 小Hi:真的没问题么? <10分钟过去> 小Ho:啊啊啊啊啊!搞不定啊!!!骨牌数量一多就乱了. 小Hi:哎,我就知道你会遇到问题. 小Ho:小 ...
- HihoCoder1181欧拉路(Fleury算法求欧拉路径)
描述 在上一回中小Hi和小Ho控制着主角收集了分散在各个木桥上的道具,这些道具其实是一块一块骨牌. 主角继续往前走,面前出现了一座石桥,石桥的尽头有一道火焰墙,似乎无法通过. 小Hi注意到在桥头有一张 ...
- 欧拉回路 & 欧拉路径
欧拉路径 & 欧拉回路 概念 欧拉路径: 如果图 G 种的一条路径包括所有的边,且仅通过一次的路径. 欧拉回路: 能回到起点的欧拉路径. 混合图: 既有无向边又有无向边的图. 判定 无向图 一 ...
- UVA10054-The Necklace(无向图欧拉回路——套圈算法)
Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...
- The Best Path HDU - 5883(欧拉回路 && 欧拉路径)
The Best Path Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Tot ...
随机推荐
- Spring Cloud与Spring Boot的关系
1.Spring Cloud是一个工具集:Spring Cloud是在Spring Boot的基础上构建的,用于简化分布式系统构建的工具集:使架构师在创建和发布微服务时极为便捷和有效. Sp ...
- OSI与TCP/IP各层的结构与功能,都有哪些协议
前言: 今天更新一下计算机网络的一些非常重要的知识,可能很多人都不知学计算机网络有什么用,我想说的是它真的比较重要,像咱们学校只要是学计算机这个专业都要学习这门课程.另外大家要是去一些像BAT,阿里, ...
- Python学习笔记 - day11 - Python操作数据库
MySQL的事务 MySQL的事务支持不是绑定在MySQL服务器本身,而是与存储引擎相关,MySQL的两种引擎如下: 1.MyISAM:不支持事务,用于只读程序提高性能 2.InnoDB:支持ACID ...
- java===java基础学习(2)---运算符,三元操作符,数学函数
主要介绍运算符,和数学函数以及三元运算符: package testbotoo; public class test1 { public static void main(String[] args) ...
- python实战===百度文字识别sdk
http://ai.baidu.com/docs#/OCR-Python-SDK/top
- 1833: [ZJOI2010]count 数字计数——数位dp
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1833 省选之前来切一道裸的数位dp.. 题意 统计[a,b]中0~9每个数字出现的次数(不算 ...
- 2015多校第6场 HDU 5360 Hiking 贪心,优先队列
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5360 题意:给定n个人,现在要邀请这些人去远足,但每个人同意邀请的条件是当前已经同意去远足的人数c必须 ...
- Python的语言特性
1.Python的函数传参 Python中所有的变量都可以理解为内存中一个对象的“引用”,或者,也可以看似C中的void *的感觉.这里记住的是类型是属于对象的,而不是变量.对象分为两种: 可更改的: ...
- 生命周期(vue的钩子函数)
生命周期图示 创建前,创建后,挂载前,挂载后,更新前,更新后,销毁前,销毁后 beforeCreate:function(){ console.log('1-beforeCreate 组件还未被创建' ...
- centos 6 编译安装php-5.4/5.5(lamp模式)
在安装LAMP架构时,我们常用php-5.3的版本 现进行php-5.4/5.5的编译安装演示: [root@localhost ~]# cd /usr/local/src [root@localho ...