March of the Penguins
Time Limit: 8000MS   Memory Limit: 65536K
Total Submissions: 4809   Accepted: 2195

Description

Somewhere near the south pole, a number of penguins are standing on a number of ice floes. Being social animals, the penguins would like to get together, all on the same floe. The penguins do not want to get wet, so they have use their limited jump distance to get together by jumping from piece to piece. However, temperatures have been high lately, and the floes are showing cracks, and they get damaged further by the force needed to jump to another floe. Fortunately the penguins are real experts on cracking ice floes, and know exactly how many times a penguin can jump off each floe before it disintegrates and disappears. Landing on an ice floe does not damage it. You have to help the penguins find all floes where they can meet.

A sample layout of ice floes with 3 penguins on them.

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:

  • One line with the integer N (1 ≤ N ≤ 100) and a floating-point number D (0 ≤ D ≤ 100 000), denoting the number of ice pieces and the maximum distance a penguin can jump.

  • N lines, each line containing xiyini and mi, denoting for each ice piece its X and Y coordinate, the number of penguins on it and the maximum number of times a penguin can jump off this piece before it disappears (−10 000 ≤ xiyi ≤ 10 000, 0 ≤ ni ≤ 10, 1 ≤ mi ≤ 200).

Output

Per testcase:

  • One line containing a space-separated list of 0-based indices of the pieces on which all penguins can meet. If no such piece exists, output a line with the single number −1.

Sample Input

2
5 3.5
1 1 1 1
2 3 0 1
3 5 1 1
5 1 1 1
5 4 0 1
3 1.1
-1 0 5 10
0 0 3 9
2 0 1 1

Sample Output

1 2 4
-1

Source

题意:
在二维坐标内有n块冰块,每只企鹅最远能跳d的距离,给出每块冰块的位置,该冰块上最初企鹅的个数以及该冰块最多能承受几个企鹅从此处跳走,求出可以把所有的企鹅都集合起来的冰块,输出冰块序号(冰块上能承受无数多企鹅,但跳出去的数量有限制)
代码:
//枚举汇点+拆点,两点之间的距离>=d的建边,然后最大流
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
const int maxn=;
const int inf=0x7fffffff;
double mp[maxn][maxn];
struct Edge{
int from,to,cap,flow;
Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};
struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>g[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void Init(int n){
this->n=n;
for(int i=;i<n;i++) g[i].clear();
edges.clear();
}
void Addedge(int from,int to,int cap){
edges.push_back(Edge(from,to,cap,));
edges.push_back(Edge(to,from,,));//反向弧
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
}
bool Bfs(){
memset(vis,,sizeof(vis));
queue<int>q;
q.push(s);
d[s]=;
vis[s]=;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=;i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=;
d[e.to]=d[x]+;
q.push(e.to);
}
}
}
return vis[t];
}
int Dfs(int x,int a){
if(x==t||a==) return a;
int flow=,f;
for(int&i=cur[x];i<(int)g[x].size();i++){
Edge &e=edges[g[x][i]];
if(d[x]+==d[e.to]&&(f=Dfs(e.to,min(a,e.cap-e.flow)))>){
e.flow+=f;
edges[g[x][i]^].flow-=f;
flow+=f;
a-=f;
if(a==) break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s;this->t=t;
int flow=;
while(Bfs()){
memset(cur,,sizeof(cur));
flow+=Dfs(s,inf);
}
return flow;
}
}dc;
int main()
{
int n,t,peng[maxn],tim[maxn];
double d,x[maxn],y[maxn];
scanf("%d",&t);
while(t--){
scanf("%d%lf",&n,&d);
int sum=;
for(int i=;i<=n;i++){
scanf("%lf%lf%d%d",&x[i],&y[i],&peng[i],&tim[i]);
sum+=peng[i];
for(int j=;j<=i;j++){
double dis=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
mp[i][j]=mp[j][i]=dis;
}
}
int ans[],cnt=;
for(int i=;i<=n;i++){
dc.Init(*n+);
for(int j=;j<=n;j++){
if(j==i) continue;
dc.Addedge(j,j+n,tim[j]);
dc.Addedge(,j,peng[j]);
for(int k=;k<=n;k++) if(mp[j][k]<=d)
dc.Addedge(j+n,k,inf);
}
if(dc.Maxflow(,i)==sum-peng[i]) ans[cnt++]=i-;
}
if(cnt==) printf("-1\n");
else{
for(int i=;i<cnt-;i++) printf("%d ",ans[i]);
printf("%d\n",ans[cnt-]);
}
}
return ;
}

poj 3498 最大流的更多相关文章

  1. poj 3498(最大流+拆点)

    题目链接:http://poj.org/problem?id=3498 思路:首先设一个超级源点,将源点与各地相连,边容量为各点目前的企鹅数量,然后就是对每个冰块i进行拆点了(i,i+n),边容量为能 ...

  2. poj 3281 最大流+建图

    很巧妙的思想 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/21/2649850.html 本题能够想到用最大流做,那真的是太绝了.建模的方法很 ...

  3. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  4. POJ 3498 March of the Penguins(网络最大流)

    Description Somewhere near the south pole, a number of penguins are standing on a number of ice floe ...

  5. poj 3498 March of the Penguins(拆点+枚举汇点 最大流)

    March of the Penguins Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 4873   Accepted: ...

  6. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  7. poj 1273 最大流

    题目链接:http://poj.org/problem?id=1273 a.EK算法:(Edmond-Karp): 用BFS不断找增广路径,当找不到增广路径时当前流量即为最大流. b.dinic算法: ...

  8. poj 1149 最大流

    题目链接:http://poj.org/problem?id=1149 #include <cstdio> #include <cmath> #include <algo ...

  9. poj 3281 最大流建图

    题目链接:http://poj.org/problem?id=3281 #include <cstdio> #include <cmath> #include <algo ...

随机推荐

  1. Skype for Business Server 方案

    方案说明: 高可用性的配置屏蔽了单点故障,使得当一个服务器节点失效时,另外的可用的节点能够进行服务的接管.可伸缩性的配置可以保证当即时沟通平台的使用用户增加时,该平台应该具有良好的可伸缩性,能非常方便 ...

  2. crt0.S(_main)代码分析

    crt0,S(_main)代码分析 --- 1. 设置sp寄存器地址 //设置SP栈指针 #if defined(CONFIG_SPL_BUILD) && defined(CONFIG ...

  3. HADOOP docker(十):hdfs 结构体系

    1.简介2.namenode和datanode3.The File System Namespace 文件系统命名空间4.Data Replication 数据复制5.Replica Placemen ...

  4. wpa_supplicant下行接口浅析

    wpa_supplicant通过socket通信机制实现下行接口,与内核进行通信,获取信息或下发命令. 以下摘自http://blog.csdn.net/fxfzz/article/details/6 ...

  5. C++课堂作业2016.05.04

    GitHub/object-oriented 作业题目 开课后的第一次作业,简单地写了一个类,用成员函数来实现计算圆的面积. [代码] main.cpp #include "Area.h&q ...

  6. UVALive - 6869 Repeated Substrings 后缀数组

    题目链接: http://acm.hust.edu.cn/vjudge/problem/113725 Repeated Substrings Time Limit: 3000MS 样例 sample ...

  7. freefcw/hustoj Install Guide

    First of all, this version hustoj is a skin and improved for https://code.google.com/p/hustoj/. So t ...

  8. java设计模式简介

    设计模式简介: 设计模式(Design pattern)代表了最佳的实践,通常被有经验的面向对象的软件开发人员所采用.设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案.这些解决方案是众多 ...

  9. java — 线程池

    线程池的作用       线程池作用就是限制系统中执行线程的数量.     根据系统的环境情况,可以自动或手动设置线程数量,达到运行的最佳效果:少了浪费了系统资源,多了造成系统拥挤效率不高.用线程池控 ...

  10. <Effective C++>读书摘要--Templates and Generic Programming<一>

    1.The initial motivation for C++ templates was straightforward: to make it possible to create type-s ...