Matlab basic operation:

>> 5+6

ans =

11

>> 3*4

ans =

12

>> 2^6

ans =

64

>> 1==2

ans =

0

>> 1~=2

ans =

1

>> 1&&0

ans =

0

>> 1||0

ans =

1

>> xor(1,0)

ans =

1

>> xor(1,1)

ans =

0

>> who

您的变量为:

ans

>> whos

Name      Size            Bytes  Class      Attributes

ans       1x1                 1  logical

>> a=3;

>> b='hi'

b =

hi

>> c=(3>=1)

c =

1

>> a=pi;

>> a

a =

3.1416

>> disp(a);

3.1416

>> disp(sprintf('2 decimals: %0.2f',a))

2 decimals: 3.14

>> disp(sprintf('6 decimals: %0.6f',a))

6 decimals: 3.141593

>> format long

>> a

a =

3.141592653589793

>> format short

>> a

a =

3.1416

>> A=[1 2;3 4;5 6]

A =

1     2

3     4

5     6

>> A=[1 2;

3 4;

5 6]

A =

1     2

3     4

5     6

>> v=[1 2 3]

v =

1     2     3

>> v=[1;2;3]

v =

1

2

3

>> v=1:0.1:2

v =

1.0000    1.1000    1.2000    1.3000    1.4000    1.5000    1.6000    1.7000    1.8000    1.9000    2.0000

>> v=1:0.3:2

v =

1.0000    1.3000    1.6000    1.9000

>> v=1:7

v =

1     2     3     4     5     6     7

>> ones(2,3)

ans =

1     1     1

1     1     1

>> C=2*ones(2,3)

C =

2     2     2

2     2     2

>> w=zeros(3,1)

w =

0

0

0

>> rand(3,3)

ans =

0.8147    0.9134    0.2785

0.9058    0.6324    0.5469

0.1270    0.0975    0.9575

>> rand(3,3)

ans =

0.9649    0.9572    0.1419

0.1576    0.4854    0.4218

0.9706    0.8003    0.9157

>> rand(3,3)

ans =

0.7922    0.0357    0.6787

0.9595    0.8491    0.7577

0.6557    0.9340    0.7431

%rand 平均分布(0~1)

%randn 标准正态分布

>> randn(3,3)

ans =

-0.2256    0.0326    1.5442

1.1174    0.5525    0.0859

-1.0891    1.1006   -1.4916

>> w=-6+sqrt(10)*(randn(1,10000))

>> hist(w)

>> hist(w,50)

>> I=eye(4)

I =

1     0     0     0

0     1     0     0

0     0     1     0

0     0     0     1

>> A

A =

1     2

3     4

5     6

>> size(A)

ans =

3     2

>> sz=size(A)

sz =

3     2

>> size(sz)

ans =

1                  2

>> size(A,1)

ans =

3

>> size(A,2)

ans =

2

>> v

v =

1     2     3     4     5     6     7

>> length(v)

ans =

7

>> length(A)   %longer dimension

ans =

3

>> v=w(1:10)

v =

-8.3474   -9.3570    1.4328   -7.9467   -3.6344   -6.6085   -3.1900   -8.4187  -10.4344  -10.4979

>> save hello.mat v

>> clear

>> load hello.mat

>> v

v =

-8.3474   -9.3570    1.4328   -7.9467   -3.6344   -6.6085   -3.1900   -8.4187  -10.4344  -10.4979

>> save hello.txt v –ascii

>> A=[1 2;3 4; 5 6]

A =

1     2

3     4

5     6

>> A(3,2)

ans =

6

>> A(2,:)

ans =

3     4

>> A(:,2)

ans =

2

4

6

>> A([1 3],:)

ans =

1     2

5     6

>> A(:,1)

ans =

1

3

5

>> A(:,2)

ans =

2

4

6

>> A(:,2)=[10; 11; 12]

A =

1    10

3    11

5    12

>> A=[A,[100;101;102]]  %append another vector to right

A =

1    10   100

3    11   101

5    12   102

>> A(:)  % put all the elements into a single vector

ans =

1

3

5

10

11

12

100

101

102

A =

1     2

3     4

5     6

>> B=[7 8;9 10;11 12]

B =

7     8

9    10

11    12

>> C=[A B]

C =

1     2     7     8

3     4     9    10

5     6    11    12

>> A

A =

1     2

3     4

5     6

>> B

B =

7     8

9    10

11    12

>> C=[2 5 ;6 7]

C =

2     5

6     7

>> A*C

ans =

14    19

30    43

46    67

>> A.*B

ans =

7    16

27    40

55    72

>> v=[1;2;3]

v =

1

2

3

>> 1./v

ans =

1.0000

0.5000

0.3333

>> 1./A

ans =

1.0000    0.5000

0.3333    0.2500

0.2000    0.1667

>> log(v)

ans =

0

0.6931

1.0986

>> exp(v)

ans =

2.7183

7.3891

20.0855

>> abs([-1;2;-3])

ans =

1

2

3

>> v+ones(length(v),1)

ans =

2

3

4

>> v+1

ans =

2

3

4

>> a=[1 15 2 0.5]

a =

1.0000   15.0000    2.0000    0.5000

>> max(a)

ans =

15

>> [val,ind]=max(a)   %max valus and it’s index

val =

15

ind =

2

>> max(A)

ans =

5     6

>> a<3

ans =

1     0     1     1

>> find(a<3)

ans =

1     3     4

>> [r,c]=find(A>7)

r =

1

3

c =

1

2

>> a

a =

1.0000   15.0000    2.0000    0.5000

>> sum(a)

ans =

18.5000

>> prod(a)  %product of a

ans =

15

>> floor(a)

ans =

1    15     2     0

>> ceil(a)

ans =

1    15     2     1

>> rand(3)

ans =

0.8099    0.6218    0.4893

0.6378    0.4146    0.0938

0.8981    0.6476    0.6373

>> rand(3)

ans =

0.9503    0.5915    0.1566

0.4764    0.2253    0.7743

0.6028    0.6684    0.2131

>> max(rand(3),rand(3))

ans =

0.1691    0.8745    0.3584

0.7258    0.6258    0.8875

0.3631    0.2581    0.9005

>> A=magic(3)

A =

8     1     6

3     5     7

4     9     2

>> max(A,[],1)

ans =

8     9     7

>> max(A,[],2)

ans =

8

7

9

>> max(A)

ans =

8     9     7

>> max(max(A))

ans =

9

>> max(A(:))

ans =

9

>> sum(A,1)

ans =

15    15    15

>> sum(A,2)

ans =

15

15

15

>> A.*eye(3)

ans =

8     0     0

0     5     0

0     0     2

>> sum(sum(A.*eye(3)))

ans =

15

>> flipud(eye(3))

ans =

0     0     1

0     1     0

1     0     0

>> A=magic(3)

A =

8     1     6

3     5     7

4     9     2

>> temp=pinv(A)

temp =

0.1472   -0.1444    0.0639

-0.0611    0.0222    0.1056

-0.0194    0.1889   -0.1028

>> temp*A

ans =

1.0000    0.0000   -0.0000

-0.0000    1.0000    0.0000

0.0000    0.0000    1.0000

>>t=[0 :0.1 :0.98] ;

>>y1=sin(2*pi*4*t) ;

>>plot(t,y1)

>> y2=cos(2*pi*4*t);

>> plot(t,y2)

>> plot(t,y1)

>> hold on

>> plot(t,y2)

>> xlabel('time')

>> ylabel('value')

>> legend('sin','cos')

>> title('plot1')

>> print -dpng 'plot1.png'  %save the diagram into a png format picture

>> figure(1);plot(t,y1);

>> figure(2);plot(t,y2);

>> subplot(1,2,1);

>> subplot(1,2,1);

>> plot(t,y1)

>> subplot(1,2,2);

>> plot(t,y2)

>> axis([0.5 1 -1 1])

>> clf

>> A=magic(5)

A =

17    24     1     8    15

23     5     7    14    16

4     6    13    20    22

10    12    19    21     3

11    18    25     2     9

>> imagesc(A)

>> imagesc(A),colorbar,colormap gray;

>> imagesc(magic(16)),colorbar,colormap gray;

>> addpath('E:\machine learning\machine-learning-ex1\machine-learning-ex1\ex1')

matlab basic operation command的更多相关文章

  1. 【MongoDB】The basic operation of Index in MongoDB

    In the past four blogs, we attached importance to the index, including description and comparison wi ...

  2. 15 Basic ‘ls’ Command Examples in Linux

    FROM: http://www.tecmint.com/15-basic-ls-command-examples-in-linux/ ls command is one of the most fr ...

  3. MatLab GUI Use Command for Debug 界面调试的一些方法

    在MatLab的GUI界面编程,我们在调试的时候需要打印出一些变量,那么介绍下我用到的两种调试方法: 第一种,使用弹出对话框来打印变量,要注意的是打印的东西必须是string类型的,所以其他类型的变量 ...

  4. 13 Basic Cat Command Examples in Linux(转) Linux中cat命令的13中基本用法

    Cat (串联) 命令是Linux/Unix开源系统中比较常用的一个命令.我们可以通过Cat命令创建一个或多个文件,查看文件内容,串联文件并将内容输出到终端设备或新的文件当中,这篇文章我们将会以实例的 ...

  5. 13 Basic Cat Command Examples in Linux

    FROM: http://www.tecmint.com/13-basic-cat-command-examples-in-linux/ The cat (short for “concatenate ...

  6. Basic Operation about Linux

    1. 永久开启/关闭防火墙 在linux中防火墙是一个名叫iptables的工具 开启: chkconfig iptables on 关闭: chkconfig iptables off 即时生效,重 ...

  7. Javascript Basic Operation Extraction

    1.  logic operation : '&&' and '||'  .For this two logic operations,its' results are inconcl ...

  8. Basic linux command

    1. useradd  解释:添加新用户,在/etc/password文件中添加一行记录. 参数: -g    用于添加账户时指定该账户的私有组,如果不指定-g参数,useradd命令会自动创建与该用 ...

  9. mysql basic operation,mysql总结

    mysql> select * from wifi_data where dev_id like "0023-AABBCCCCBBAA" ; 1.显示数据库列表.show d ...

随机推荐

  1. varnish4.0 流程图以及说明

    varnish 中的内置变量 req repos client server bereq beresp bereq bereq.http.HEADER 由varnish发往backend server ...

  2. 浅析 Magento网站建站空间的选择

    对 Magento稍有了解的人都知道,作为一个功能异常强大的网络商城程序,Magento的运行对主机空间的要求是非常高的:很多 Magento建站公司都会推荐 VPS 甚至独立服务器来运行 Magen ...

  3. (转)nodejs中npm常用命令

    npm install <name>安装nodejs的依赖包 例如npm install express 就会默认安装express的最新版本,也可以通过在后面加版本号的方式安装指定版本, ...

  4. .NET 扩展方法(Extention Method)的要点

    扩展方法Extention Method的主要介绍在:http://msdn.microsoft.com/zh-cn/library/bb383977(v=vs.100).aspx. 扩展方法的意义在 ...

  5. Thinkstation center M8600t装RHEL7不能联网,网卡驱动没装问题

    Thinkstation center M8600t装RHEL7时不能联网,配置ip也不可以,后来发现网卡驱动没有安装.可以通过装网卡驱动的方式解决问题,解决方法如下: root登录 lspci |  ...

  6. 此实现不是 Windows 平台 FIPS 验证的加密算法的一部分

    在实用VS编程的时候大家经常会遇到一个问题: 下面小编来为大家提供一个简单的解决方案: 1.在Windows中打开功能里输入regedit,回车打开注册表编辑器: 2.转到路径HKEY_LOCAL_M ...

  7. pod install 无限卡顿

    pod install  被墙了,请大家换成pod install --verbose --no-repo-update

  8. JSONObject put,accumulate,element的区别

    public Object put (Object key, Object value) 将value映射到key下.如果此JSONObject对象之前存在一个value在这个key下,当前的valu ...

  9. 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)

    Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...

  10. python 在最后一行追加

    2.文本文件的写入 import fileinput file = open("D:\\test.txt", encoding="utf-8",mode=&qu ...