Matlab basic operation:

>> 5+6

ans =

11

>> 3*4

ans =

12

>> 2^6

ans =

64

>> 1==2

ans =

0

>> 1~=2

ans =

1

>> 1&&0

ans =

0

>> 1||0

ans =

1

>> xor(1,0)

ans =

1

>> xor(1,1)

ans =

0

>> who

您的变量为:

ans

>> whos

Name      Size            Bytes  Class      Attributes

ans       1x1                 1  logical

>> a=3;

>> b='hi'

b =

hi

>> c=(3>=1)

c =

1

>> a=pi;

>> a

a =

3.1416

>> disp(a);

3.1416

>> disp(sprintf('2 decimals: %0.2f',a))

2 decimals: 3.14

>> disp(sprintf('6 decimals: %0.6f',a))

6 decimals: 3.141593

>> format long

>> a

a =

3.141592653589793

>> format short

>> a

a =

3.1416

>> A=[1 2;3 4;5 6]

A =

1     2

3     4

5     6

>> A=[1 2;

3 4;

5 6]

A =

1     2

3     4

5     6

>> v=[1 2 3]

v =

1     2     3

>> v=[1;2;3]

v =

1

2

3

>> v=1:0.1:2

v =

1.0000    1.1000    1.2000    1.3000    1.4000    1.5000    1.6000    1.7000    1.8000    1.9000    2.0000

>> v=1:0.3:2

v =

1.0000    1.3000    1.6000    1.9000

>> v=1:7

v =

1     2     3     4     5     6     7

>> ones(2,3)

ans =

1     1     1

1     1     1

>> C=2*ones(2,3)

C =

2     2     2

2     2     2

>> w=zeros(3,1)

w =

0

0

0

>> rand(3,3)

ans =

0.8147    0.9134    0.2785

0.9058    0.6324    0.5469

0.1270    0.0975    0.9575

>> rand(3,3)

ans =

0.9649    0.9572    0.1419

0.1576    0.4854    0.4218

0.9706    0.8003    0.9157

>> rand(3,3)

ans =

0.7922    0.0357    0.6787

0.9595    0.8491    0.7577

0.6557    0.9340    0.7431

%rand 平均分布(0~1)

%randn 标准正态分布

>> randn(3,3)

ans =

-0.2256    0.0326    1.5442

1.1174    0.5525    0.0859

-1.0891    1.1006   -1.4916

>> w=-6+sqrt(10)*(randn(1,10000))

>> hist(w)

>> hist(w,50)

>> I=eye(4)

I =

1     0     0     0

0     1     0     0

0     0     1     0

0     0     0     1

>> A

A =

1     2

3     4

5     6

>> size(A)

ans =

3     2

>> sz=size(A)

sz =

3     2

>> size(sz)

ans =

1                  2

>> size(A,1)

ans =

3

>> size(A,2)

ans =

2

>> v

v =

1     2     3     4     5     6     7

>> length(v)

ans =

7

>> length(A)   %longer dimension

ans =

3

>> v=w(1:10)

v =

-8.3474   -9.3570    1.4328   -7.9467   -3.6344   -6.6085   -3.1900   -8.4187  -10.4344  -10.4979

>> save hello.mat v

>> clear

>> load hello.mat

>> v

v =

-8.3474   -9.3570    1.4328   -7.9467   -3.6344   -6.6085   -3.1900   -8.4187  -10.4344  -10.4979

>> save hello.txt v –ascii

>> A=[1 2;3 4; 5 6]

A =

1     2

3     4

5     6

>> A(3,2)

ans =

6

>> A(2,:)

ans =

3     4

>> A(:,2)

ans =

2

4

6

>> A([1 3],:)

ans =

1     2

5     6

>> A(:,1)

ans =

1

3

5

>> A(:,2)

ans =

2

4

6

>> A(:,2)=[10; 11; 12]

A =

1    10

3    11

5    12

>> A=[A,[100;101;102]]  %append another vector to right

A =

1    10   100

3    11   101

5    12   102

>> A(:)  % put all the elements into a single vector

ans =

1

3

5

10

11

12

100

101

102

A =

1     2

3     4

5     6

>> B=[7 8;9 10;11 12]

B =

7     8

9    10

11    12

>> C=[A B]

C =

1     2     7     8

3     4     9    10

5     6    11    12

>> A

A =

1     2

3     4

5     6

>> B

B =

7     8

9    10

11    12

>> C=[2 5 ;6 7]

C =

2     5

6     7

>> A*C

ans =

14    19

30    43

46    67

>> A.*B

ans =

7    16

27    40

55    72

>> v=[1;2;3]

v =

1

2

3

>> 1./v

ans =

1.0000

0.5000

0.3333

>> 1./A

ans =

1.0000    0.5000

0.3333    0.2500

0.2000    0.1667

>> log(v)

ans =

0

0.6931

1.0986

>> exp(v)

ans =

2.7183

7.3891

20.0855

>> abs([-1;2;-3])

ans =

1

2

3

>> v+ones(length(v),1)

ans =

2

3

4

>> v+1

ans =

2

3

4

>> a=[1 15 2 0.5]

a =

1.0000   15.0000    2.0000    0.5000

>> max(a)

ans =

15

>> [val,ind]=max(a)   %max valus and it’s index

val =

15

ind =

2

>> max(A)

ans =

5     6

>> a<3

ans =

1     0     1     1

>> find(a<3)

ans =

1     3     4

>> [r,c]=find(A>7)

r =

1

3

c =

1

2

>> a

a =

1.0000   15.0000    2.0000    0.5000

>> sum(a)

ans =

18.5000

>> prod(a)  %product of a

ans =

15

>> floor(a)

ans =

1    15     2     0

>> ceil(a)

ans =

1    15     2     1

>> rand(3)

ans =

0.8099    0.6218    0.4893

0.6378    0.4146    0.0938

0.8981    0.6476    0.6373

>> rand(3)

ans =

0.9503    0.5915    0.1566

0.4764    0.2253    0.7743

0.6028    0.6684    0.2131

>> max(rand(3),rand(3))

ans =

0.1691    0.8745    0.3584

0.7258    0.6258    0.8875

0.3631    0.2581    0.9005

>> A=magic(3)

A =

8     1     6

3     5     7

4     9     2

>> max(A,[],1)

ans =

8     9     7

>> max(A,[],2)

ans =

8

7

9

>> max(A)

ans =

8     9     7

>> max(max(A))

ans =

9

>> max(A(:))

ans =

9

>> sum(A,1)

ans =

15    15    15

>> sum(A,2)

ans =

15

15

15

>> A.*eye(3)

ans =

8     0     0

0     5     0

0     0     2

>> sum(sum(A.*eye(3)))

ans =

15

>> flipud(eye(3))

ans =

0     0     1

0     1     0

1     0     0

>> A=magic(3)

A =

8     1     6

3     5     7

4     9     2

>> temp=pinv(A)

temp =

0.1472   -0.1444    0.0639

-0.0611    0.0222    0.1056

-0.0194    0.1889   -0.1028

>> temp*A

ans =

1.0000    0.0000   -0.0000

-0.0000    1.0000    0.0000

0.0000    0.0000    1.0000

>>t=[0 :0.1 :0.98] ;

>>y1=sin(2*pi*4*t) ;

>>plot(t,y1)

>> y2=cos(2*pi*4*t);

>> plot(t,y2)

>> plot(t,y1)

>> hold on

>> plot(t,y2)

>> xlabel('time')

>> ylabel('value')

>> legend('sin','cos')

>> title('plot1')

>> print -dpng 'plot1.png'  %save the diagram into a png format picture

>> figure(1);plot(t,y1);

>> figure(2);plot(t,y2);

>> subplot(1,2,1);

>> subplot(1,2,1);

>> plot(t,y1)

>> subplot(1,2,2);

>> plot(t,y2)

>> axis([0.5 1 -1 1])

>> clf

>> A=magic(5)

A =

17    24     1     8    15

23     5     7    14    16

4     6    13    20    22

10    12    19    21     3

11    18    25     2     9

>> imagesc(A)

>> imagesc(A),colorbar,colormap gray;

>> imagesc(magic(16)),colorbar,colormap gray;

>> addpath('E:\machine learning\machine-learning-ex1\machine-learning-ex1\ex1')

matlab basic operation command的更多相关文章

  1. 【MongoDB】The basic operation of Index in MongoDB

    In the past four blogs, we attached importance to the index, including description and comparison wi ...

  2. 15 Basic ‘ls’ Command Examples in Linux

    FROM: http://www.tecmint.com/15-basic-ls-command-examples-in-linux/ ls command is one of the most fr ...

  3. MatLab GUI Use Command for Debug 界面调试的一些方法

    在MatLab的GUI界面编程,我们在调试的时候需要打印出一些变量,那么介绍下我用到的两种调试方法: 第一种,使用弹出对话框来打印变量,要注意的是打印的东西必须是string类型的,所以其他类型的变量 ...

  4. 13 Basic Cat Command Examples in Linux(转) Linux中cat命令的13中基本用法

    Cat (串联) 命令是Linux/Unix开源系统中比较常用的一个命令.我们可以通过Cat命令创建一个或多个文件,查看文件内容,串联文件并将内容输出到终端设备或新的文件当中,这篇文章我们将会以实例的 ...

  5. 13 Basic Cat Command Examples in Linux

    FROM: http://www.tecmint.com/13-basic-cat-command-examples-in-linux/ The cat (short for “concatenate ...

  6. Basic Operation about Linux

    1. 永久开启/关闭防火墙 在linux中防火墙是一个名叫iptables的工具 开启: chkconfig iptables on 关闭: chkconfig iptables off 即时生效,重 ...

  7. Javascript Basic Operation Extraction

    1.  logic operation : '&&' and '||'  .For this two logic operations,its' results are inconcl ...

  8. Basic linux command

    1. useradd  解释:添加新用户,在/etc/password文件中添加一行记录. 参数: -g    用于添加账户时指定该账户的私有组,如果不指定-g参数,useradd命令会自动创建与该用 ...

  9. mysql basic operation,mysql总结

    mysql> select * from wifi_data where dev_id like "0023-AABBCCCCBBAA" ; 1.显示数据库列表.show d ...

随机推荐

  1. c++防止客户端多开巧妙代码

    在读OBS源码时看到一个比较有意思的关于防止用户多开程序的写法,简单有效,记录下 //make sure only one instance of the application can be ope ...

  2. Ubuntu Kylin 14.04下配置JDK1.8

    1.源码包准备: 首先到官网下载jdk,http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.h ...

  3. Ubuntu16.04安装vim插件YouCompleteMe

    原文 1 下载 git clone --recursive git://github.com/Valloric/YouCompleteMe 如果执行该命令没报错, 就ok了. 但是中途有可能会断掉, ...

  4. vue.js在windows本地下搭建环境和创建项目

    Vue.js是一套构建用户界面的渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层,并且非常容易学习,非常容易与其它库或已有项目整合.另一方面,Vu ...

  5. C#操作Mongodb的心得

    Mongodb是一个强大的文档型数据库,采用BSON的数据格式.本文主要采用其官方的C#驱动来操作其表中的集合.驱动版本为1.1.0,下载地址为: http://mongodb.github.io/m ...

  6. ubuntu16.04部署RED5流媒体服务器

    前提:jdk已经安装 1,下载RED5(https://github.com/Red5/red5-server/releases)选择red5-server-X.X.X-MXX.tar.gz 2,解压 ...

  7. TP框架常用(一)

    25.显示最后一条查询的sql语句:主要用于在连贯操作时,检测拼接的sql语句是否正确 echo $this->db->last_query();//如:select * from pt_ ...

  8. 不同数据库中同一张表的SQL循环修改语句

    select sample_value,Sample_GUID,row_number() over(order by sample_value )as rownumber into  #AATemp  ...

  9. Navicat Premium相关注册码

    --Navicat for SQL Server V10.0.10NAVD-3CG2-6KRN-IEPMNAVL-NIGY-6MYY-XWQENAVI-C3UU-AAGI-57FW --Navicat ...

  10. window.onload和$(document).ready()的区别

    window.onload和$(document).ready()的区别,如下表所示   window.onload $(document).ready() 执行时间 在页面所有内容(图片.文件)加载 ...