Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 13519   Accepted: 7876

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this
material, he saw at a glance that he'll need a computer to calculate the number
of ways to fill the large rectangle whose dimensions were integer values, as
well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case
is made up of two integer numbers: the height h and the width w of the large
rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

For each test
case, output the number of different ways the given rectangle can be filled with
small rectangles of size 2 times 1. Assume the given large rectangle is
oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source

题目大意:给一个n,m,问n乘m的矩形用1*2的矩形填,填满有多少种方式
ac代码
196K 16MS
#include<stdio.h>
#include<string.h>
#define LL __int64
LL dp[2][1<<12];
int n,m;
LL add;
void dfs(int i,int p,int pos)
{
if(pos==m)
{
dp[i][p]+=add;
return;
}
dfs(i,p,pos+1);
if(pos<m-1&&!(p&(1<<pos))&&!(p&(1<<(pos+1))))
{
dfs(i,p|(1<<pos)|(1<<(pos+1)),pos+2);
}
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF,n||m)
{
if(n*m%2)
{
printf("0\n");
continue;
}
int rt=(1<<m)-1;
memset(dp,0,sizeof(dp));
add=1;
dfs(0,0,0);
int i,j;
for(i=1;i<n;i++)
{
memset(dp[i%2],0,sizeof(dp[i%2]));
for(j=0;j<=rt;j++)
{
if(dp[(i-1)%2][j])
{
add=dp[(i-1)%2][j];
dfs(i%2,~j&rt,0);
}
}
}
printf("%I64d\n",dp[(n-1)%2][rt]);
}
}

  

POJ 题目2411 Mondriaan's Dream(状压DP)的更多相关文章

  1. POJ 2411 Mondriaan's Dream -- 状压DP

    题目:Mondriaan's Dream 链接:http://poj.org/problem?id=2411 题意:用 1*2 的瓷砖去填 n*m 的地板,问有多少种填法. 思路: 很久很久以前便做过 ...

  2. POJ 2411 Mondriaan's Dream ——状压DP 插头DP

    [题目分析] 用1*2的牌铺满n*m的格子. 刚开始用到动规想写一个n*m*2^m,写了半天才知道会有重复的情况. So Sad. 然后想到数据范围这么小,爆搜好了.于是把每一种状态对应的转移都搜了出 ...

  3. Poj 2411 Mondriaan's Dream(状压DP)

    Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Description Squares and rectangles fascina ...

  4. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  5. POJ 2411 Mondriaan'sDream(状压DP)

    题目大意:一个矩阵,只能放1*2的木块,问将这个矩阵完全覆盖的不同放法有多少种. 解析:如果是横着的就定义11,如果竖着的定义为竖着的01,这样按行dp只需要考虑两件事儿,当前行&上一行,是不 ...

  6. POJ 3311 Hie with the Pie (状压DP)

    dp[i][j][k] i代表此层用的状态序号 j上一层用的状态序号 k是层数&1(滚动数组) 标准流程 先预处理出所有合法数据存在status里 然后独立处理第一层 然后根据前一层的max推 ...

  7. POJ 1321 棋盘问题(DFS & 状压DP)

    用DFS写当然很简单了,8!的复杂度,16MS搞定. 在Discuss里看到有同学用状态压缩DP来写,就学习了一下,果然很精妙呀. 状态转移分两种,当前行不加棋子,和加棋子.dp[i][j]中,i代表 ...

  8. POJ:1185-炮兵阵地(状压dp入门)

    炮兵阵地 Time Limit: 2000MS Memory Limit: 65536K Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组 ...

  9. poj 2404 中国邮递员问题 欧拉回路判定+状压dp

    /* 状压dp 邮递员问题:求经过任意点出发经过每一条边一次并回到原点. 解法:1.如果是欧拉回路那么就是所有的边的总和. 2.一般的解法,找出所有的奇度顶点,任意两个顶点匹配,即最小完美匹配,可用状 ...

随机推荐

  1. X.509,RSA,PKCS 普及

    X.509 X.509是一种非常通用的证书格式.所有的证书都符合ITU-T X.509国际标准,因此(理论上)为一种应用创建的证书可以用于任何其他符合X.509标准的应用. 在一份证书中,必须证明公钥 ...

  2. Eclipse右下角一直提示Computing additional info解决办法

    今天不知道按了什么,发现Eclipse右下角一直提示computing additional info,打开progress,里面同时有好几条一样的信息,但是一直也执行不完,上网查找方案,发现原来是用 ...

  3. servlet学习笔记_2

    一.Servlet线程安全问题1.servlet的线程安全问题.servlet引擎采用多线程的模式运行,它为并发的每个访问请求都预备一个线程来相应,但是由于只有一个servlet对象,因此,如果多个线 ...

  4. css3 transition动画

    CSS3: 一.transition: <property> <duration> <animation type> <delay> eg: .div{ ...

  5. iOS —— 字典遍历排序

    字典NSDictionary一般的遍历方法都是: NSArray* arr = [yourdictonary allKeys]; for(NSString* str in arr) { NSLog(& ...

  6. flask+html selected 根据后台数据设定默认值

    先给代码 <script> $("#selector_political_status").val('{{ archive.political_status }}'); ...

  7. html中给表格添加斜线

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  8. Linux下解压文件

    unzip + 文件名   (解压.zip文件到当前目录) gunzip –c filename.gz > filename   (解压.gz文件到当前目录,保留原文件) tar -zxvf - ...

  9. Fragment:关于Avoid non-default constructors in fragments的错误

    在android开发中,写了一个关于继承Fragment的类时,如果有重载构造函数时,会提示“Avoid non-default constructors in fragments: use a de ...

  10. #pragma pack(push,1)与#pragma pack(1)的区别

    这是给编译器用的参数设置,有关结构体字节对齐方式设置, #pragma pack是指定数据在内存中的对齐方式. #pragma pack (n)             作用:C编译器将按照n个字节对 ...