Problem A:

题目大意:

给出以节点1为根的一棵树A,判断它是否是特殊的。一棵树是特殊的当且仅当不存在和它不完全相同的一棵树B,使得A中点i到点1的距离和B中相等。

题解:

假设一个点x的深度是d,它的父亲是y,如果存在一个深度为d-1的点z,那么把x从y下面移到z下面就可以得到树B了。所以求出每个深度的点的个数,只有当所有深度的点的个数都为1,最大深度的点的个数任意的时候 树是特殊的。


Problem B:

题目大意:

给出N个点N条边的无向图判断是否存在哈密顿路。 N<=1000.

题解:

一开始没看到边也是N条,然后去各种百度哈密顿路的求法......

我的做法是:

先去掉重边和自环,然后判断连通性.如果不连通那么肯定不存在。如果连通,那么剩下的只可能是N-1条边或者N条边。

考虑N-1条边的情况,是一棵树,草稿纸上画一下可以发现所有点的度数必须小于等于2才有哈密顿回路。

考虑N条边的情况,是一棵树上加了一条边。所以枚举删去一条边,然后用N-1条边时的判断方法搞。复杂度O(N),但是有100组数据,所以TLE了。

优化:在连通图图的前提下,如果存在哈密顿路,肯定是一条链上加了一条边的样子。所以最多有2个点的度数是3,其他点的度数小于等于2. 而且如果所有点的度数都小于等于2那么一定存在。 所以好多case就可以直接判断了。  不是很完美,但是还是水过了。。

官方题解是从度数最小的点开始DFS,复杂度就是O(N)的。不知道为什么。


Problem C:

有一棵nn个节点的树。令1号点为根且令d_id​i​​为1号点到ii号点的距离。

选出至少两个节点。显然,一共有2^n-n-12​n​​−n−1种选取的方案。等概率的随机选取一种方案。接着,令ff为选取的点中d_id​i​​的最大值,gg为选取点中d_id​i​​的次大值(ff可能等于gg)。

最后要知道\frac{(f+1)(g+1)}{f+1+g+1}​f+1+g+1​​(f+1)(g+1)​​的期望值。   N《=100000

题解:
先求出距离,然后排序,枚举最大值v[j]和次大值v[i], 当 j-i>=65的时候 概率就很小了,分母是2^(n-i+1) 级别的, j-i>=60的时候 就不必计算了。 和之前CF的一道题差不多。 A了3题拿到了Rank 5. 好开心。

BestCoder Round #53 (div.1)的更多相关文章

  1. hdu 5424 Rikka with Graph II (BestCoder Round #53 (div.2))(哈密顿通路判断)

    http://acm.hdu.edu.cn/showproblem.php?pid=5424 哈密顿通路:联通的图,访问每个顶点的路径且只访问一次 n个点n条边 n个顶点有n - 1条边,最后一条边的 ...

  2. HDU 5432 Rikka with Tree (BestCoder Round #53 (div.2))

    http://acm.hdu.edu.cn/showproblem.php?pid=5423 题目大意:给你一个树 判断这棵树是否是独特的 一颗树是独特的条件:不存在一颗和它本身不同但相似的树 两颗树 ...

  3. 哈密顿图 BestCoder Round #53 (div.2) 1003 Rikka with Graph II

    题目传送门 题意:判断是否为哈密顿图 分析:首先一种情况是不合法的:也就是度数为1的点超过2个:合法的有:,那么从度数为1的点开始深搜,如果存在一种走法能够走完n个点那么存在哈密顿路 收获:学习资料 ...

  4. BestCoder Round #69 (div.2) Baby Ming and Weight lifting(hdu 5610)

    Baby Ming and Weight lifting Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  5. BestCoder Round #68 (div.2) tree(hdu 5606)

    tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submis ...

  6. BestCoder Round #11 (Div. 2) 题解

    HDOJ5054 Alice and Bob Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  7. hdu5635 BestCoder Round #74 (div.2)

    LCP Array  Accepts: 131  Submissions: 1352  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: 13 ...

  8. hdu 5636 搜索 BestCoder Round #74 (div.2)

    Shortest Path  Accepts: 40  Submissions: 610  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: ...

  9. hdu5634 BestCoder Round #73 (div.1)

    Rikka with Phi  Accepts: 5  Submissions: 66  Time Limit: 16000/8000 MS (Java/Others)  Memory Limit: ...

随机推荐

  1. 关于C语言宏定义 使用do{ xxxx }while()

    暂时感觉像是由于":"的原因,关于使用习惯方面的问题!! 下面是copy的: 这样的宏见过么: Cpp代码 #define FOO(x) do {\ some_code_line_ ...

  2. 【leetcode❤python】 204. Count Primes

    #-*- coding: UTF-8 -*- #Hint1:#数字i,i的倍数一定不是质数,因此去掉i的倍数,例如5,5*1,5*2,5*3,5*4,5*5都不是质数,应该去掉#5*1,5*2,5*3 ...

  3. Oracle(创建index)

    概念: 1. 类似书的目录结构 2. Oracle 的“索引”对象,与表关联的可选对象,提高SQL查询语句的速度 3. 索引直接指向包含所查询值的行的位置,减少磁盘I/O 4. 与所索引的表是相互独立 ...

  4. 1. C语言中的数据结构.md

    C语言内建数据结构类型 整型 整型数据是最基本的数据类型,不过从整形出发衍生出好几种integer-like数据结构,譬如字符型,短整型,整型,长整型.他们都是最基本的方式来组织的数据结构,一般是几位 ...

  5. Python进阶(三)--global和类属性

    global关键字 一句话概括为:告诉python解释器,global声明的变量为全局作用域内定义的变量.解释器就会到全局作用域内寻找global定义的变量. python的类属性 类属性相当于其他O ...

  6. VirtualBox piix4_smbus Error

    VirtualBox piix4_smbus Error   VirtualBox 3.2.10 gives me the following error message when booting U ...

  7. td在relative模式下,IE9不显示border

    方法一 .thisTd {    background-clip: padding-box;     position:relative; } 方法二 .thisTd {   z-index=-1; ...

  8. MySQL 5.7 解压版安装配置

    测试环境 系统:Windows 10专业版 版本:MySQL Server 5.7.14   提纲 修改配置文件 初始化 安装服务.启动服务 修改root密码   步骤 1.解压安装包 在MySQL官 ...

  9. String转double或者float会有精度丢失的问题

    float [] value=new float[5]; value[0]=Float.parseFloat(rs.getString(1)); value[1]=Float.parseFloat(r ...

  10. js 作用域

    js 作用域 js作用域链查找,子函数能取到父函数中定义的变量. 前段时间误写成如下形式: 这只是普通的函数调用,没有父子的关系,child()函数会在全局查找pi变量,没找到所以报错. 最近发现原来 ...