Schwarz积分公式
设$f\in H(B(0,R))\cap C(\overline{B(0,R)})$,且$f=u+iv$,则$f$可用其实部表示为
$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}\frac{Re^{i\theta}+z}{Re^{i\theta}-z}u(Re^{i\theta}){\rm d}\theta+iv(0)$$
这是史济怀《复变函数》P117的第8题,方法很多,这里写两种。
方法一:$\forall z\in B(0,R)$,由Cauchy积分公式$$f(z)=\frac{1}{2\pi i}\int_{\partial B(0,R)}\frac{f(\zeta)}{\zeta-z}{\rm d}\zeta=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\frac{\zeta}{\zeta-z}{\rm d}\theta\tag{1}$$
而$z$关于$\partial B(0,R)$的对称点为$z^*=\frac{R^2}{\overline{z}}$在圆外,所以由Cauchy积分定理$$0=\frac{1}{2\pi i}\int_{\partial B(0,R)}\frac{f(\zeta)}{\zeta-\frac{R^2}{\overline{z}}}{\rm d}\zeta=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\frac{\zeta\overline{z}}{\zeta\overline{z}-R^2}{\rm d}\theta\tag{2}$$
(1)-(2)得$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\left(\frac{\zeta}{\zeta-z}-\overline{\left(\frac{z}{z-\zeta}\right)}\right){\rm d}\theta=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)\frac{R^2-|z|^2}{\left|\zeta-z\right|^2}{\rm d}\theta$$
如果记$P(\zeta,z)=\frac{1}{2\pi}\frac{R^2-|z|^2}{\left|\zeta-z\right|^2}$(这个被称为Poisson核),并在上面的等式两边取实部便有$$u(z)=\int_{0}^{2\pi}u(\zeta)P(\zeta,z){\rm d}\theta$$
这个公式被称为Poisson公式,在Dirchlet问题中很有用.
我们注意到Poisson核$$\frac{1}{2\pi}\frac{R^2-|z|^2}{|\zeta-z|^2}=\frac{1}{2\pi}{\rm Re}\frac{\zeta+z}{\zeta-z}$$
因此全纯函数$f$的实部也是如下函数的实部$$g(z)=\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta)\frac{\zeta+z}{\zeta-z}{\rm d}\theta$$
不难验证函数$g(z)$在$B(0,R)$中全纯,而${\rm Re}g(z)={\rm Re}f(z)$,这说明$f,g$至多相差一个常数.设$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta)\frac{\zeta+z}{\zeta-z}{\rm d}\theta+C$$
其中$C\in\mathbb C$为常数,下面来确定$C$的值.在上式中令$z=0$,可得\begin{align*}f(0)&=\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta){\rm d}\theta+C=u(0)+C\\\Rightarrow C&=iv(0)\end{align*}
所以可以得到Schwarz积分公式$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta)\frac{\zeta+z}{\zeta-z}{\rm d}\theta+iv(0).$$
方法一:$f$可在$B(0,R)$中展开成幂级数$$f(z)=\sum_{n=0}^{\infty}a_{n}z^n$$
其中\begin{align*}a_{n}&=\frac{1}{2\pi i}\int_{\partial B(0,R)}\frac{f(\zeta)}{\zeta^{n+1}}{\rm d}\zeta\\\Rightarrow a_{n}R^n&=\frac{1}{2\pi}\int_{0}^{2\pi}f(\zeta)e^{-in\theta}{\rm d}\theta\end{align*}
注意到$\int_{\partial B(0,R)}f(\zeta)\zeta^{n-1}{\rm d}\zeta=0,\forall n\geq1$.可得\begin{align*}0&=\int_{0}^{2\pi}\overline{f(\zeta)}e^{-in\theta}{\rm d}\theta\\\Rightarrow a_{n}R^n&=\frac{1}{\pi}\int_{0}^{2\pi}u(\zeta)e^{-in\theta}{\rm d}\theta,n\geq1\end{align*}
所以\begin{align*}f(z)=f(0)+\sum_{n=1}^{\infty}a_{n}R^n\left(\frac{z}{R}\right)^n&=f(0)+\frac{1}{\pi}\sum_{n=1}^{\infty}\int_{0}^{2\pi}u(\zeta)\left(\frac{z}{\zeta}\right)^n{\rm d}\theta\end{align*}
注意到$\left|u(\zeta)\left(\frac{z}{\zeta}\right)^n\right|\leq M\left(\frac{|z|}{R}\right)^n$,可知函数项级数$\sum u(\zeta)\left(\frac{z}{\zeta}\right)^n$关于$\theta$一致收敛,因此可交换积分与求和次序\begin{align*}f(z)&=f(0)+\frac{1}{\pi}\int_{0}^{2\pi}u(\zeta)\sum_{n=1}^{\infty}\left(\frac{z}{\zeta}\right)^n{\rm d}\theta=f(0)+\frac{1}{\pi}\int_{0}^{2\pi}u(\zeta)\frac{z}{\zeta-z}{\rm d}\theta\\&=f(0)+\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta)\frac{\zeta+z}{\zeta-z}{\rm d}\theta-u(0)\end{align*}
同样可以得到Schwarz积分公式$$f(z)=\frac{1}{2\pi}\int_{0}^{2\pi}u(\zeta)\frac{\zeta+z}{\zeta-z}{\rm d}\theta+iv(0).$$
Schwarz积分公式的更多相关文章
- Schwarz导数与凹凸性
命题 1: 定义区间$I$上的Schwarz导数$$D^{2}f(x)=\lim_{h\to 0}\frac{f(x+h)+f(x-h)-2f(x)}{h^{2}}$$若$D^{2}f(x)\geq ...
- schwarz( 施瓦兹)不等式证明
证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2&l ...
- 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- 基于ARM处理器的反汇编器软件简单设计及实现
写在前面 2012年写的毕业设计,仅供参考 反汇编的目的 缺乏某些必要的说明资料的情况下, 想获得某些软件系统的源代码.设计思想及理念, 以便复制, 改造.移植和发展: 从源码上对软件的可靠性和安全性 ...
- 当我们在谈论kmeans(2)
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2 ...
- OpenCASCADE Gauss Integration
OpenCASCADE Gauss Integration eryar@163.com Abstract. Numerical integration is the approximate compu ...
- OpenCASCADE Curve Length Calculation
OpenCASCADE Curve Length Calculation eryar@163.com Abstract. The natural parametric equations of a c ...
- java程序员保持天天快乐的6个习惯
忍不住感叹,我第一次对Buffer(在社交媒体上发布最简单的方式)有所想法已经差不多是两年前的事了.并且,在我有想法的一年半前,我还在前面那家新创公司工作的时...... 忍不住感叹,我第一次对Buf ...
随机推荐
- dubbo zk 分布式服务项目搭建与配置
1. 项目 jar -----提供接口 2. 项目 jar -----接口实现 provider启动zk main方法启动 start applicationContext.xml <b ...
- Sqlserver 语法总结
修改列类型 alter table PRO_Element_b alter column matname varchar(1024) 更改一个表中的数据到另外一个表中 update a set a.n ...
- bzoj3110
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 5881 Solved: 1958[Submit][Sta ...
- JavaScript零基础学习系列三
函数 函数:为了完成某个功能而定义的代码的集体.函数是数据类型,只读的对象:函数也是对象:代码的重用.(JavaScript中) 定义语法:function 函数名(形式参数1,形式参数2--){ / ...
- 解决:笔记本安装mint18时,安装界面显示不全
近日在给自己的笔记本安装mint18时,安装界面显示不全,就是安装时到了分区界面后看不到下一步. 很无奈.... 于是胡乱摸索,得到解决的办法. 按住键盘上的ALT键,用鼠标向上拖动安装的界面,最好是 ...
- bzoj2083【Poi2010】Intelligence test
听说正解是链表,然而被我暴力水过了 先开vector记录每个数在原串中出现的位置 之后对于每个匹配串的每一位,找比当前位置大的第一个当前元素是哪个,有就更新,没有就"NIE" #i ...
- Bzoj1176 [Balkan2007]Mokia
Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 2000 Solved: 890 Description 维护一个W*W的矩阵,初始值均为S.每次操作 ...
- Zabbix性能优化
前言 如果不做表分区和删除历史数据规则设置的话,随着时间的推移zabbix的查询性能会变得很低 查看zabbix的性能 通过zabbix的NVPS(每秒处理数值数)来衡量其性能,在zabbix的das ...
- mui jquery 同时使用
(function ($, doc, $$) { $.init(); $.ready(function () { var cityPicker = new $.PopPicker({ layer: } ...
- 如何合并两个Docker 镜像
http://www.open-open.com/lib/view/open1437746544709.html 在你的机器上使用docker pull来从Docker Hub下载镜像. docker ...