Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. aaaa

    http://www.host.com http://www.host.com http://sz.weixun.com/scenery/details-3.htm http://sz.weixun. ...

  2. Code for the Homework2

    第二次作业,最近有点忙,一直没写,先发一下,关节角计算有点问题,后面抽时间改 #include<iostream> #include <Eigen/Dense> #includ ...

  3. 浏览器对象模型BOM(Browser Object Model)

    1.结构 BOM是Browser Object Model的缩写,简称浏览器对象模型 BOM提供了独立于内容而与浏览器窗口进行交互的对象 由于BOM主要用于管理窗口与窗口之间的通讯,因此其核心对象是w ...

  4. (转)Const,Const函数,Const变量,函数后面的Const

    本文转自http://www.cnblogs.com/Fancyboy2004/archive/2008/12/23/1360810.html 看到const 关键字,C++程序员首先想到的可能是co ...

  5. UINavigationController 总结

    一 . UINavigationBar 1.获取 UINavigationBar 对象: [UINavigationBar appearance] ,可以通过该方法对全部 navigation 进行设 ...

  6. MongoDB 学习

    MongoDB 的官方网站 :https://www.mongodb.org 可通过官方网站下载相应的文件 下载之后对文件进行解压 http://www.cnblogs.com/huangxinche ...

  7. scrum敏捷开发

    团队PM:袁佩佩 scrum敏捷开发计划制定: 确定项目实施具体阶段目标 确定项目相关任务分解 确定每日站立会议进行计划 确定项目计划总结日程 确定风险解决方案

  8. uva 11461

    简单 打个表 case数不超过200 数据比较水  木有超时的风险~~ /*************************************************************** ...

  9. C++11多线程教学(一)

    本篇教学代码可在GitHub获得:https://github.com/sol-prog/threads. 在之前的教学中,我展示了一些最新进的C++11语言内容: 1. 正则表达式(http://s ...

  10. highcharts 柱形堆叠图

    <!doctype html> <html lang="en"> <head> <script type="text/javas ...