Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. XCODE7新变化之-test

    Xcode 7新鲜出炉,一大早下载下来就安装上了,急急地体验一把.这几天公司给的任务是单元测试,那我们一起来用新版本做一次测试吧. 除了官方发布的下载链接地址,分享本人的xcode 7下载地址,大家不 ...

  2. Xcode 向6.0以后版本添加iOS开发空白模板

    打开finder,找到应用程序,找到xcode 右键显示包内容.按照如下目录进行查找:Contents ▸ Developer ▸ Platforms ▸ iPhoneOS.platform ▸ De ...

  3. CROSS APPLY vs OUTER APPLY

    Apply 工作原理:    Apply操作符让符合查询的每一条记录都调用一次TVF函数,并将结果与原数据表的记录内容一起展开.    Apply操作符定义在From子句内,使用方式与Join操作符类 ...

  4. 你不需要jQuery

    http://www.webhek.com/you-do-not-need-jquery

  5. html css 如何将表头固定(转)

    html css 如何将表头固定 position属性取值为fixed时,则元素的位置将不受滚动条的影响,而是直接依据窗口定位,这就是将表头固定的最直接方法,网上其他途径感觉都是在走弯路.但是与此同时 ...

  6. robots.txt协议-互联网robots搜索规范

    最近在看搜索爬虫相关的,挺有趣的,记录一些信息备用. robots.txt官方说明网站 http://www.robotstxt.org/ robots.txt原则 Robots协议是国际互联网界通行 ...

  7. Unity3D调用第三方SDK(之一)从eclipse到Unity3D 友盟

    原地址:http://www.360doc.com/content/14/0120/14/11670799_346638215.shtml 篇展示在Unity3D中调用友盟SDK的实现方法. 首先附上 ...

  8. Error building Player: CommandInvokationFailure: Failed to re-package resources. See the Console for details. ShareSDK 也有这种错误

    Error building Player: CommandInvokationFailure: Failed to re-package resources. See the Console for ...

  9. ValueError: Attempted relative import in non-package

    执行:python deom/scripts/populate.py ValueError: Attempted relative import in non-package solve:python ...

  10. ****JFinal 部署在 Tomcat 下推荐方法

    首先明确一下 JFinal 项目是标准的 java web 项目,其部署方式与普通 java web 项目没有任何差别.Java Web 项目在 Tomcat 下部署有一些不必要的坑需要避免 经常有人 ...