Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}, \eex$$ $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

Solution. By Exercise I.5.1, $$\beex \bea |\det(\sef{u_i,v_j})|^2 &=\sev{ \sef{ u_1\wedge \cdots u_k,v_1\wedge \cdots \wedge v_k } }^2\\ &\leq \sen{ u_1\wedge \cdots \wedge u_k }^2\sen{ v_1\wedge \cdots \wedge v_k }^2\\ &=\det \sex{\sef{u_i,u_j}}\cdot \det \sex{\sef{v_i,v_j}}. \eea \eeex$$ Similarly, by Exercise I.5.5, we have $$\bex |\per(\sef{u_i,v_j})|^2 \leq \per\sex{\sef{u_i,u_j}}\cdot \per \sex{\sef{v_i,v_j}}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. Java内存区域与内存溢出异常(二)

    了解Java虚拟机的运行时数据区之后,大致知道了虚拟机内存的概况,内存中都放了些什么,接下来将了解内存中数据的其他细节,如何创建.如何布局.如何访问.这里虚拟机以HotSpot为例,内存区域以Java ...

  2. poj 3249 Test for Job (记忆化深搜)

    http://poj.org/problem?id=3249 Test for Job Time Limit: 5000MS   Memory Limit: 65536K Total Submissi ...

  3. linux学习笔记(1)-文件处理相关命令

    列出文件和目录 ls (list) #ls 在终端里键入ls,并回车,就会列出当前目录的文件和目录,但是不包括隐藏文件和目录 #ls -a 列出当前目录的所有文件 #ls -al 列出当前目的所有文件 ...

  4. 3.5 spring-replaced-method 子元素的使用与解析

    1.replaced-method 子元素 方法替换: 可以在运行时用新的方法替换现有的方法,与之前的 look-up不同的是replace-method 不但可以动态地替换返回的实体bean,而且可 ...

  5. Fiddler 日志

    Fiddler 日志(Logging) 在开发扩展插件及编写FiddlerScript时对调试程序非常有用. 1.输出日志 在FiddlerScript脚本中,你可以这样输出输出日志: Fiddler ...

  6. tornado做简单socket服务器(TCP)

    http://blog.csdn.net/chenggong2dm/article/details/9041181 服务器端代码如下: #! /usr/bin/env python #coding=u ...

  7. Shell命令合集

    Ccat zdd 浏览文件zdd的内容cat zdd1 zdd2 浏览多个文件的内容cat -n zdd浏览文件zdd的内容并显示行号 cd 回到起始目录,也即刚登陆到系统的目录,cd后面无参数cd ...

  8. Binding to the Most Recent Visual Studio Libraries--说的很详细,很清楚

    Every version of Visual Studio comes with certain versions of the Microsoft libraries, such as the C ...

  9. hdu 3929 Big Coefficients 容斥原理

    看懂题目,很容易想到容斥原理. 刚开始我用的是二进制表示法实现容斥原理,但是一直超时.后来改为dfs就过了…… 代码如下: #include<iostream> #include<s ...

  10. UINavigationController使用详解

    UINavigationController使用详解 有一阵子没有写随笔,感觉有点儿手生.一个多月以后终于又一次坐下来静下心写随笔,记录自己的学习笔记,也希望能够帮到大家. 废话少说回到正题,UINa ...