Path sum: four ways

NOTE: This problem is a significantly more challenging version of Problem 81.

In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by moving left, right, up, and down, is indicated in bold red and is equal to 2297.

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331

Find the minimal path sum, in matrix.txt  (right click and “Save Link/Target As…”), a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right by moving left, right, up, and down.


路径和:四个方向

注意:这是第81题的一个极具挑战性的版本。

在如下的5乘5矩阵中,从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和为2297,由标注红色的路径给出。

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331


在这个31K的文本文件matrix.txt (右击并选择“目标另存为……”)中包含了一个80乘80的矩阵,求出从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和。

 解题

表示很复杂,这个应该用到图,dijkstra算法可解。

参考解题论坛中的程序,也就是dijkstra算法,只是用Python实现起来,比较简单。

实现思路:

1.当前节点(0,0)开始,在临近节点,寻找最短路径

2.是最短路径的节点位置保存

3,根据2中保存的节点,再找其到临近节点的最短路径

Python

import time
def readData(filename):
fl = open(filename)
data =[]
for row in fl:
row = row.split(',')
line = [int(i) for i in row]
data.append(line)
fl.close()
return data def next_steps(pos):
(j,i) = pos
if i+1<size:
right = minnum[j,i] + data[j][i+1]
if right< minnum[j,i+1]:
minnum[j,i+1] = right
next_list.append((j,i+1))
if j+1< size:
down = minnum[j,i] + data[j+1][i]
if down < minnum[j+1,i]:
minnum[j+1,i] = down
next_list.append((j+1,i))
if i-1 > -1:
left = minnum[j,i] + data[j][i-1]
if left < minnum[j,i-1]:
minnum[j,i-1] = left
next_list.append((j,i-1))
if j-1 > -1:
up = minnum[j,i] + data[j-1][i]
if up < minnum[j-1,i]:
minnum[j-1,i] = up
next_list.append((j-1,i)) t0 = time.time()
filename = 'E:/java/projecteuler/src/Level3/p083_matrix.txt'
data = readData(filename)
size = 80
infinity = 10**10
minnum = {}
for i in range(0,size):
for j in range(0,size):
minnum[j,i] = infinity next_list = [] minnum[0,0] = data[0][0]
test = [(0,0)]
while test!=[]:
next_list = []
for el in test:
next_steps(el)
test = next_list
print minnum[size-1,size-1]
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 0.112999916077 s

Java

package Level3;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList; public class PE083{ static int[][] grid;
static void run() throws IOException{
String filename = "src/Level3/p083_matrix.txt";
String lineString = "";
ArrayList<String> listData = new ArrayList<String>();
BufferedReader data = new BufferedReader(new FileReader(filename));
while((lineString = data.readLine())!= null){
listData.add(lineString);
}
// 分配大小空间的 定义的grid 没有定义大小
assignArray(listData.size());
// 按照行添加到数组grid中
for(int index = 0,row_counter=0;index <=listData.size() - 1;++index,row_counter++){
populateArray(listData.get(index),row_counter);
}
int result = minPath(grid,0,0,80-1,80-1);
System.out.println(result); }
// matrix[a][b] to matrix[c][d] 的最小值
public static int minPath(int[][] matrix,int a,int b,int c,int d){
int[][] D = new int[matrix.length][matrix[0].length];
for(int i=0;i<D.length;i++)
for(int j=0;j<D[0].length;j++)
D[i][j] = Integer.MAX_VALUE;
D[a][b] = matrix[a][b];
int x=a,y=b;
while(true){
// 计算 x y 节点到上下左右四个方向的路径,若小则更新
// 下
if(x < D.length -1)
if(D[x+1][y] > 0)
D[x+1][y] = Math.min(matrix[x+1][y] + D[x][y], D[x+1][y]);
// 右
if( y<D[0].length -1)
if(D[x][y+1] >0)
D[x][y+1] = Math.min(matrix[x][y+1] + D[x][y], D[x][y+1]);
//上
if(x>0)
if(D[x-1][y] >0)
D[x-1][y] = Math.min(matrix[x-1][y] + D[x][y], D[x-1][y]);
// 左
if(y>0)
if(D[x][y-1]>0)
D[x][y-1] = Math.min(matrix[x][y-1] + D[x][y], D[x][y-1]);
if(x==c && y==d)
return D[x][y]; // 访问过的节点取其相反数
D[x][y] =-D[x][y];
// 选取下一个节点
// 在未被访问的节点中,选取路径值最小的
int min = Integer.MAX_VALUE;
for(int i=0;i< D.length;i++){
for(int j=0;j<D[0].length;j++){
if(D[i][j]>0 && D[i][j] < min){
min = D[i][j];
x = i;
y = j;
}
}
}
}
}
public static int Path_min(int[][] A){
int size = A.length;
int B[][] = new int[size][size];
B[0][0] = A[0][0];
B[0][1] = A[0][0] + A[0][1];
B[1][0] = A[0][0] + A[1][0];
for(int i = 1;i<size; i++){
for(int j = 1;j<size ;j++){
B[i][j] = A[i][j] + get4min(B[i-1][j],B[i+1][j],
B[i][j-1],B[i][j+1]);
}
}
return B[size-1][size-1];
}
public static int get4min(int a,int b,int c,int d){
int min1 = Math.min(a, b);
int min2 = Math.min(c, d);
return Math.min(min1, min2);
}
// 每行的数据添加到数组中
public static void populateArray(String str,int row){
int counter = 0;
String[] data = str.split(",");
for(int index = 0;index<=data.length -1;++index){
grid[row][counter++] = Integer.parseInt(data[index]);
}
}
public static void assignArray(int no_of_row){
grid = new int[no_of_row][no_of_row];
} public static void main(String[] args) throws IOException{
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
// 425185
// running time=0s187ms
}
}

Java Code

Project Euler 83:Path sum: four ways 路径和:4个方向的更多相关文章

  1. Project Euler 82:Path sum: three ways 路径和:3个方向

    Path sum: three ways NOTE: This problem is a more challenging version of Problem 81. The minimal pat ...

  2. Project Euler 81:Path sum: two ways 路径和:两个方向

    Path sum: two ways In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom ...

  3. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  4. 【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】

    [064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with ...

  5. [LeetCode] Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  6. [LeetCode] Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  7. [LeetCode] Binary Tree Maximum Path Sum(最大路径和)

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  8. [LeetCode] 113. Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  9. [LeetCode] 112. Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

随机推荐

  1. Google Ajax Library API使用方法(JQuery)

    Google Ajax Library API使用方法 1.传统方式: <script src="//ajax.googleapis.com/ajax/libs/jquery/1.7. ...

  2. 跨域名设置cookie或获取cookie

    可以使用jquery里面的ajax中的jsonp的方式来访问就可以了.代码如下: $.ajax({ url: 'your url', data: {'xx' : 'xx', 'xx2' : 'xx2' ...

  3. 交换a和b

    有点儿类似脑筋急转弯.做个标记先. 网上还看到比较奇特的,一句代码就OK的: 注:要都是int类型才行. 还有比较奇特的: 还有一个:

  4. 使用CSS画一个三角形

    <div style="width:0px;height:0px;border-width:40px;border-style:solid;border-color:transpare ...

  5. 【面试虐菜】—— Apache知识整理

    Apache性能调优1 Apache 部分:1. 移除不用的模块.2. 使用 mod_disk_cache NOT mod_mem_cache .3. 扁平架构配置mod_disk_cache.4.  ...

  6. advance 模板 怎么生成module

    advance 模板 怎么生成module namespace写什么如果是前台呢就是 frontend\modules\modulename\Module@我叫红领巾 module id有什么用bak ...

  7. 实现iOS长时间后台的两种方法:Audiosession和VOIP(转)

    分类: Iphone2013-01-24 14:03 986人阅读 评论(0) 收藏 举报 我们知道iOS开启后台任务后可以获得最多600秒的执行时间,而一些需要在后台下载或者与服务器保持连接的App ...

  8. 深入理解ThreadLocal(一)

    Android里,在不同的线程(假设子线程已经创建了Looper)中创建Handler时,并不需要显式指定Looper,系统能自动找到该线程自己的Looper.不同线程的Looper相互独立,之所以能 ...

  9. Java Web应用中调优线程池的重要性

    不论你是否关注,Java Web应用都或多或少的使用了线程池来处理请求.线程池的实现细节可能会被忽视,但是有关于线程池的使用和调优迟早是需要了解的.本文主要介绍Java线程池的使用和如何正确的配置线程 ...

  10. sqlserver 动态表名 动态字段名 执行 动态sql

    动态语句基本语法: 1 :普通SQL语句可以用exec执行 Select * from tableName exec('select * from tableName') exec sp_execut ...