Project Euler 83:Path sum: four ways 路径和:4个方向
Path sum: four ways
NOTE: This problem is a significantly more challenging version of Problem 81.
In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by moving left, right, up, and down, is indicated in bold red and is equal to 2297.
131 | 673 | 234 | 103 | 18 |
201 | 96 | 342 | 965 | 150 |
630 | 803 | 746 | 422 | 111 |
537 | 699 | 497 | 121 | 956 |
805 | 732 | 524 | 37 | 331 |
Find the minimal path sum, in matrix.txt (right click and “Save Link/Target As…”), a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right by moving left, right, up, and down.
路径和:四个方向
注意:这是第81题的一个极具挑战性的版本。
在如下的5乘5矩阵中,从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和为2297,由标注红色的路径给出。
131 | 673 | 234 | 103 | 18 |
201 | 96 | 342 | 965 | 150 |
630 | 803 | 746 | 422 | 111 |
537 | 699 | 497 | 121 | 956 |
805 | 732 | 524 | 37 | 331 |
在这个31K的文本文件matrix.txt (右击并选择“目标另存为……”)中包含了一个80乘80的矩阵,求出从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和。
解题
表示很复杂,这个应该用到图,dijkstra算法可解。
参考解题论坛中的程序,也就是dijkstra算法,只是用Python实现起来,比较简单。
实现思路:
1.当前节点(0,0)开始,在临近节点,寻找最短路径
2.是最短路径的节点位置保存
3,根据2中保存的节点,再找其到临近节点的最短路径
Python
import time
def readData(filename):
fl = open(filename)
data =[]
for row in fl:
row = row.split(',')
line = [int(i) for i in row]
data.append(line)
fl.close()
return data def next_steps(pos):
(j,i) = pos
if i+1<size:
right = minnum[j,i] + data[j][i+1]
if right< minnum[j,i+1]:
minnum[j,i+1] = right
next_list.append((j,i+1))
if j+1< size:
down = minnum[j,i] + data[j+1][i]
if down < minnum[j+1,i]:
minnum[j+1,i] = down
next_list.append((j+1,i))
if i-1 > -1:
left = minnum[j,i] + data[j][i-1]
if left < minnum[j,i-1]:
minnum[j,i-1] = left
next_list.append((j,i-1))
if j-1 > -1:
up = minnum[j,i] + data[j-1][i]
if up < minnum[j-1,i]:
minnum[j-1,i] = up
next_list.append((j-1,i)) t0 = time.time()
filename = 'E:/java/projecteuler/src/Level3/p083_matrix.txt'
data = readData(filename)
size = 80
infinity = 10**10
minnum = {}
for i in range(0,size):
for j in range(0,size):
minnum[j,i] = infinity next_list = [] minnum[0,0] = data[0][0]
test = [(0,0)]
while test!=[]:
next_list = []
for el in test:
next_steps(el)
test = next_list
print minnum[size-1,size-1]
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 0.112999916077 s
Java
package Level3; import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList; public class PE083{ static int[][] grid;
static void run() throws IOException{
String filename = "src/Level3/p083_matrix.txt";
String lineString = "";
ArrayList<String> listData = new ArrayList<String>();
BufferedReader data = new BufferedReader(new FileReader(filename));
while((lineString = data.readLine())!= null){
listData.add(lineString);
}
// 分配大小空间的 定义的grid 没有定义大小
assignArray(listData.size());
// 按照行添加到数组grid中
for(int index = 0,row_counter=0;index <=listData.size() - 1;++index,row_counter++){
populateArray(listData.get(index),row_counter);
}
int result = minPath(grid,0,0,80-1,80-1);
System.out.println(result); }
// matrix[a][b] to matrix[c][d] 的最小值
public static int minPath(int[][] matrix,int a,int b,int c,int d){
int[][] D = new int[matrix.length][matrix[0].length];
for(int i=0;i<D.length;i++)
for(int j=0;j<D[0].length;j++)
D[i][j] = Integer.MAX_VALUE;
D[a][b] = matrix[a][b];
int x=a,y=b;
while(true){
// 计算 x y 节点到上下左右四个方向的路径,若小则更新
// 下
if(x < D.length -1)
if(D[x+1][y] > 0)
D[x+1][y] = Math.min(matrix[x+1][y] + D[x][y], D[x+1][y]);
// 右
if( y<D[0].length -1)
if(D[x][y+1] >0)
D[x][y+1] = Math.min(matrix[x][y+1] + D[x][y], D[x][y+1]);
//上
if(x>0)
if(D[x-1][y] >0)
D[x-1][y] = Math.min(matrix[x-1][y] + D[x][y], D[x-1][y]);
// 左
if(y>0)
if(D[x][y-1]>0)
D[x][y-1] = Math.min(matrix[x][y-1] + D[x][y], D[x][y-1]);
if(x==c && y==d)
return D[x][y]; // 访问过的节点取其相反数
D[x][y] =-D[x][y];
// 选取下一个节点
// 在未被访问的节点中,选取路径值最小的
int min = Integer.MAX_VALUE;
for(int i=0;i< D.length;i++){
for(int j=0;j<D[0].length;j++){
if(D[i][j]>0 && D[i][j] < min){
min = D[i][j];
x = i;
y = j;
}
}
}
}
}
public static int Path_min(int[][] A){
int size = A.length;
int B[][] = new int[size][size];
B[0][0] = A[0][0];
B[0][1] = A[0][0] + A[0][1];
B[1][0] = A[0][0] + A[1][0];
for(int i = 1;i<size; i++){
for(int j = 1;j<size ;j++){
B[i][j] = A[i][j] + get4min(B[i-1][j],B[i+1][j],
B[i][j-1],B[i][j+1]);
}
}
return B[size-1][size-1];
}
public static int get4min(int a,int b,int c,int d){
int min1 = Math.min(a, b);
int min2 = Math.min(c, d);
return Math.min(min1, min2);
}
// 每行的数据添加到数组中
public static void populateArray(String str,int row){
int counter = 0;
String[] data = str.split(",");
for(int index = 0;index<=data.length -1;++index){
grid[row][counter++] = Integer.parseInt(data[index]);
}
}
public static void assignArray(int no_of_row){
grid = new int[no_of_row][no_of_row];
} public static void main(String[] args) throws IOException{
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
// 425185
// running time=0s187ms
}
}
Java Code
Project Euler 83:Path sum: four ways 路径和:4个方向的更多相关文章
- Project Euler 82:Path sum: three ways 路径和:3个方向
Path sum: three ways NOTE: This problem is a more challenging version of Problem 81. The minimal pat ...
- Project Euler 81:Path sum: two ways 路径和:两个方向
Path sum: two ways In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom ...
- Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)
Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...
- 【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】
[064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with ...
- [LeetCode] Path Sum II 二叉树路径之和之二
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...
- [LeetCode] Path Sum 二叉树的路径和
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- [LeetCode] Binary Tree Maximum Path Sum(最大路径和)
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [LeetCode] 113. Path Sum II 二叉树路径之和之二
Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...
- [LeetCode] 112. Path Sum 二叉树的路径和
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
随机推荐
- memcached/redis安全性
最近看到说redis,memcached服务器安全的问题,想想也是,使用这两种服务N年了,由于历史问题吧,工作中基本是以memcached为主,后来才慢慢引入运用redis.由于memcached是没 ...
- 【Qt】Qt之自定义界面(QMessageBox)【转】
简述 通过前几节的自定义窗体的学习,我们可以很容易的写出一套属于自己风格的界面框架,通用于各种窗体,比如:QWidget.QDialog.QMainWindow. 大多数窗体的实现都是采用控件堆积来完 ...
- AngularJS(14)-动画
AngularJS 提供了动画效果,可以配合 CSS 使用. AngularJS 使用动画需要引入 angular-animate.min.js 库. <!DOCTYPE html> &l ...
- Android 中 shape 图形的使用
转载于:http://kofi1122.blog.51cto.com/2815761/521605 Android中常常使用shape来定义控件的一些显示属性,今天看了一些shape的使用,对shap ...
- How to add EDT relation table[AX2012]
setp 1. First create New Edit. setp 2.Create New Table First Table Name is NParentRel then drag and ...
- Spark菜鸟学习营Day3 RDD编程进阶
Spark菜鸟学习营Day3 RDD编程进阶 RDD代码简化 对于昨天练习的代码,我们可以从几个方面来简化: 使用fluent风格写法,可以减少对于中间变量的定义. 使用lambda表示式来替换对象写 ...
- 使用Telerik的登陆模板实现DoubanFm的登陆(WP7)
Telerik的控件很强大.我们直接使用其登陆模板. 在装过Telerik WP版后,就可以在VS里非常方便的添加页面了. 我们选择 Sign In Form 其XAML不是很长,直接贴出来 < ...
- 括弧匹配检验(check)
/*题目:括弧匹配检验 检验给定表达式中括弧是否正确匹配 (两种括弧“( ) ”“[]" ,正确输出OK,错误则输出wrong. 2016年8月8日07:24:58 作者:冰樱梦 */ # ...
- backbone collection add 事件回调参数
this.listenTo(this.collection, 'add', this.renderBook); renderBook: function (item) { var bookView = ...
- ios系统 处理内存警告
iPhone下每个app可用的内存是被限制的,如果一个app使用的内存超过20M,则系统会向该app发送Memory Warning消息.收到此消息后,app必须正确处理,否则可能出错或者出现内存泄露 ...