Path sum: four ways

NOTE: This problem is a significantly more challenging version of Problem 81.

In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by moving left, right, up, and down, is indicated in bold red and is equal to 2297.

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331

Find the minimal path sum, in matrix.txt  (right click and “Save Link/Target As…”), a 31K text file containing a 80 by 80 matrix, from the top left to the bottom right by moving left, right, up, and down.


路径和:四个方向

注意:这是第81题的一个极具挑战性的版本。

在如下的5乘5矩阵中,从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和为2297,由标注红色的路径给出。

         
131 673 234 103 18
201 96 342 965 150
630 803 746 422 111
537 699 497 121 956
805 732 524 37 331


在这个31K的文本文件matrix.txt (右击并选择“目标另存为……”)中包含了一个80乘80的矩阵,求出从左上角到右下角任意地向上、向下、向左或向右移动的最小路径和。

 解题

表示很复杂,这个应该用到图,dijkstra算法可解。

参考解题论坛中的程序,也就是dijkstra算法,只是用Python实现起来,比较简单。

实现思路:

1.当前节点(0,0)开始,在临近节点,寻找最短路径

2.是最短路径的节点位置保存

3,根据2中保存的节点,再找其到临近节点的最短路径

Python

import time
def readData(filename):
fl = open(filename)
data =[]
for row in fl:
row = row.split(',')
line = [int(i) for i in row]
data.append(line)
fl.close()
return data def next_steps(pos):
(j,i) = pos
if i+1<size:
right = minnum[j,i] + data[j][i+1]
if right< minnum[j,i+1]:
minnum[j,i+1] = right
next_list.append((j,i+1))
if j+1< size:
down = minnum[j,i] + data[j+1][i]
if down < minnum[j+1,i]:
minnum[j+1,i] = down
next_list.append((j+1,i))
if i-1 > -1:
left = minnum[j,i] + data[j][i-1]
if left < minnum[j,i-1]:
minnum[j,i-1] = left
next_list.append((j,i-1))
if j-1 > -1:
up = minnum[j,i] + data[j-1][i]
if up < minnum[j-1,i]:
minnum[j-1,i] = up
next_list.append((j-1,i)) t0 = time.time()
filename = 'E:/java/projecteuler/src/Level3/p083_matrix.txt'
data = readData(filename)
size = 80
infinity = 10**10
minnum = {}
for i in range(0,size):
for j in range(0,size):
minnum[j,i] = infinity next_list = [] minnum[0,0] = data[0][0]
test = [(0,0)]
while test!=[]:
next_list = []
for el in test:
next_steps(el)
test = next_list
print minnum[size-1,size-1]
t1 = time.time()
print "running time=",(t1-t0),"s" #
# running time= 0.112999916077 s

Java

package Level3;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList; public class PE083{ static int[][] grid;
static void run() throws IOException{
String filename = "src/Level3/p083_matrix.txt";
String lineString = "";
ArrayList<String> listData = new ArrayList<String>();
BufferedReader data = new BufferedReader(new FileReader(filename));
while((lineString = data.readLine())!= null){
listData.add(lineString);
}
// 分配大小空间的 定义的grid 没有定义大小
assignArray(listData.size());
// 按照行添加到数组grid中
for(int index = 0,row_counter=0;index <=listData.size() - 1;++index,row_counter++){
populateArray(listData.get(index),row_counter);
}
int result = minPath(grid,0,0,80-1,80-1);
System.out.println(result); }
// matrix[a][b] to matrix[c][d] 的最小值
public static int minPath(int[][] matrix,int a,int b,int c,int d){
int[][] D = new int[matrix.length][matrix[0].length];
for(int i=0;i<D.length;i++)
for(int j=0;j<D[0].length;j++)
D[i][j] = Integer.MAX_VALUE;
D[a][b] = matrix[a][b];
int x=a,y=b;
while(true){
// 计算 x y 节点到上下左右四个方向的路径,若小则更新
// 下
if(x < D.length -1)
if(D[x+1][y] > 0)
D[x+1][y] = Math.min(matrix[x+1][y] + D[x][y], D[x+1][y]);
// 右
if( y<D[0].length -1)
if(D[x][y+1] >0)
D[x][y+1] = Math.min(matrix[x][y+1] + D[x][y], D[x][y+1]);
//上
if(x>0)
if(D[x-1][y] >0)
D[x-1][y] = Math.min(matrix[x-1][y] + D[x][y], D[x-1][y]);
// 左
if(y>0)
if(D[x][y-1]>0)
D[x][y-1] = Math.min(matrix[x][y-1] + D[x][y], D[x][y-1]);
if(x==c && y==d)
return D[x][y]; // 访问过的节点取其相反数
D[x][y] =-D[x][y];
// 选取下一个节点
// 在未被访问的节点中,选取路径值最小的
int min = Integer.MAX_VALUE;
for(int i=0;i< D.length;i++){
for(int j=0;j<D[0].length;j++){
if(D[i][j]>0 && D[i][j] < min){
min = D[i][j];
x = i;
y = j;
}
}
}
}
}
public static int Path_min(int[][] A){
int size = A.length;
int B[][] = new int[size][size];
B[0][0] = A[0][0];
B[0][1] = A[0][0] + A[0][1];
B[1][0] = A[0][0] + A[1][0];
for(int i = 1;i<size; i++){
for(int j = 1;j<size ;j++){
B[i][j] = A[i][j] + get4min(B[i-1][j],B[i+1][j],
B[i][j-1],B[i][j+1]);
}
}
return B[size-1][size-1];
}
public static int get4min(int a,int b,int c,int d){
int min1 = Math.min(a, b);
int min2 = Math.min(c, d);
return Math.min(min1, min2);
}
// 每行的数据添加到数组中
public static void populateArray(String str,int row){
int counter = 0;
String[] data = str.split(",");
for(int index = 0;index<=data.length -1;++index){
grid[row][counter++] = Integer.parseInt(data[index]);
}
}
public static void assignArray(int no_of_row){
grid = new int[no_of_row][no_of_row];
} public static void main(String[] args) throws IOException{
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms");
// 425185
// running time=0s187ms
}
}

Java Code

Project Euler 83:Path sum: four ways 路径和:4个方向的更多相关文章

  1. Project Euler 82:Path sum: three ways 路径和:3个方向

    Path sum: three ways NOTE: This problem is a more challenging version of Problem 81. The minimal pat ...

  2. Project Euler 81:Path sum: two ways 路径和:两个方向

    Path sum: two ways In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom ...

  3. Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划)

    Leetcode 931. Minimum falling path sum 最小下降路径和(动态规划) 题目描述 已知一个正方形二维数组A,我们想找到一条最小下降路径的和 所谓下降路径是指,从一行到 ...

  4. 【LeetCode-面试算法经典-Java实现】【064-Minimum Path Sum(最小路径和)】

    [064-Minimum Path Sum(最小路径和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Given a m x n grid filled with ...

  5. [LeetCode] Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  6. [LeetCode] Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

  7. [LeetCode] Binary Tree Maximum Path Sum(最大路径和)

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  8. [LeetCode] 113. Path Sum II 二叉树路径之和之二

    Given a binary tree and a sum, find all root-to-leaf paths where each path's sum equals the given su ...

  9. [LeetCode] 112. Path Sum 二叉树的路径和

    Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...

随机推荐

  1. JQuery在iframe中实现 点击后选中当前栏目的样式

    二级或者三级折叠菜单参考http://www.cnblogs.com/qigege/p/5178947.html <script type="text/javascript" ...

  2. Windows7系统禁用USB和启用USB方法

    被迫装了XX软件之后,无线网络和USB都被禁用了,XX软件还不能被卸载.只能用PE进去时候把XX软件安装目录进行删除,但是删除之后还是不能识别U盘,从网上找到办法一看是注册表的项被修改了. 注册表项为 ...

  3. 【原】ComboBoxety用户输入自动匹配

    //在界面构造函数里加入下面两行代码 this.cbbDepartureAirport.AutoCompleteMode = System.Windows.Forms.AutoCompleteMode ...

  4. jQuery基础选择器

    attr()方法的功能是设置或获取元素的某项属性值. attr("disabled", "true”)表示使该功能不可用. #id 选择器 $("#my_id& ...

  5. php后台如何避免用户直接进入方法实例

    这篇文章介绍了php后台如何避免用户直接进入方法实例,有需要的朋友可以参考一下 1)创建BaseController控制器继承Controller(后台的一切操作要继承BaseController): ...

  6. php 文件上传简单类---限制仅上传jpg文件

    php 文件上传代码,限制只能上传jpg格式文件,也可以自行添加其它扩展名的文件. <?php /* * 图片上传类 仅限JPG格式图片 * edit by www.jbxue.com at 2 ...

  7. string和stringBuilder的区别

    曾经被问到过这个问题,回答得不是很好,在网上找了一下,园子里有大神很详细地讨论了二者的区别. http://www.cnblogs.com/yunfeng8967/articles/1093832.h ...

  8. SQL中的类型转换

    SQL中的类型转换一直是以块心病,因为用得比较少,所以每次想用的时候都要想半天,恰好这段时间比较空,整理整理.今天写个标题先.

  9. Spark菜鸟学习营Day1 从Java到RDD编程

    Spark菜鸟学习营Day1 从Java到RDD编程 菜鸟训练营主要的目标是帮助大家从零开始,初步掌握Spark程序的开发. Spark的编程模型是一步一步发展过来的,今天主要带大家走一下这段路,让我 ...

  10. Java Day 04

    01 语句 循环结构 嵌套  列的递减 1-5 2-5 3-5// 1-5 1-4 1-3 转义字符 \n 回车 \t 制表符 \b 退格 \r 按下回车键 windows 回车符由 \r \n 组成 ...