不难发现两边的活动是交替进行的,我们可以dp

先对时间离散化,设f[i,j]到时间i一个会场选j个活动,另一个会场最多有多少活动,那么f[i,j]=max(f[k,j]+s[k,i],f[k,j-s[k,i]])

然后第一问的答案就是max(min(f[n*2,i],i))

第二问是要求必选一个,那这一定形如中间一段必须选,向左向右分别dp

假设中间那段是(i,j)时最优值是g[i,j]

肯定要预处理时间i前一个会场选j个活动,另一个会场最多有多少活动和时间i到结束一个会场选j个活动,另一个会场最多有多少活动

我们记为fl[i,j],fr[i,j],不难得到g[i,j]=max{min(x+y+s[i,j],fl[i,x]+fr[j,y])} (注意到f[]数组的两个会场取值是对称的)

处理g[i,j]是O(n4)的,拍几组数据可以发现当i,j固定时,随着x的增大,对应最优的y减小

其实主观上也很好理解,肯定是两个会场活动尽量平衡,证明吗……不会……

 var fl,fr,f,g:array[..,..] of longint;
a,s,e:array[..] of longint;
i,n,m,k,j,x,y,ans,t:longint; procedure max(var a:longint; b:longint);
begin
if a<b then a:=b;
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; procedure swap(var a,b:longint);
var c:longint;
begin
c:=a;
a:=b;
b:=c;
end; procedure sort(l,r:longint);
var i,j,x:longint;
begin
i:=l;
j:=r;
x:=a[(l+r) shr ];
repeat
while a[i]<x do inc(i);
while x<a[j] do dec(j);
if not(i>j) then
begin
swap(a[i],a[j]);
inc(i);
dec(j);
end;
until i>j;
if l<j then sort(l,j);
if i<r then sort(i,r);
end; function find(l,r,x:longint):longint;
var m:longint;
begin
while l<=r do
begin
m:=(l+r) shr ;
if a[m]=x then exit(m);
if a[m]>x then r:=m- else l:=m+;
end;
end; begin
readln(n);
for i:= to n do
begin
readln(s[i],e[i]);
e[i]:=s[i]+e[i];
inc(t);
a[t]:=s[i];
inc(t);
a[t]:=e[i];
end;
sort(,t);
m:=;
for i:= to t do
if a[i]<>a[m] then
begin
inc(m);
a[m]:=a[i];
end;
for i:= to n do
begin
s[i]:=find(,m,s[i]);
e[i]:=find(,m,e[i]);
inc(g[s[i],e[i]]);
end;
for i:= to m do
for j:=i+ to m do
inc(g[i,j],g[i,j-]);
for j:= to m do
for i:=j- downto do
inc(g[i,j],g[i+,j]);
for i:= to m+ do
for j:= to n do
begin
fl[i,j]:=-n;
fr[i,j]:=-n;
end;
fl[,]:=; fr[m+,]:=;
for i:= to m do
for j:= to i- do
for k:= to n do
begin
max(fl[i,k],fl[j,k]+g[j,i]);
if k>=g[j,i] then max(fl[i,k],fl[j,k-g[j,i]]);
end;
for i:=m downto do
for j:=i+ to m+ do
for k:= to n do
begin
max(fr[i,k],fr[j,k]+g[i,j]);
if k>=g[i,j] then max(fr[i,k],fr[j,k-g[i,j]]);
end;
ans:=;
for i:= to n do
max(ans,min(fl[m,i],i));
writeln(ans);
for i:= to m do
for j:=i to m do
begin
y:=g[j,m];
for x:= to g[,i] do
begin
while (y>) and (min(x+y-+g[i,j],fl[i,x]+fr[j,y-])>=min(x+y+g[i,j],fl[i,x]+fr[j,y])) do dec(y);
max(f[i,j],min(x+y+g[i,j],fl[i,x]+fr[j,y]));
end;
end; for i:= to n do
begin
ans:=;
for x:= to s[i] do
for y:=e[i] to m do
max(ans,f[x,y]);
writeln(ans);
end;
end.

bzoj2436的更多相关文章

  1. BZOJ2436 [Noi2011]Noi嘉年华 【dp】

    题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...

  2. 【BZOJ2436】【NOI2011】NOI嘉年华(动态规划)

    [BZOJ2436]NOI嘉年华(动态规划) 题面 BZOJ 题解 考虑第一问如何求解 发现状态与选择了哪些活动无关,只与时间有关 设\(f[i][j]\)表示前\(i\)个单位时间(离散后),一个嘉 ...

  3. 【BZOJ-2436】嘉年华 DP + 优化

    2436: [Noi2011]Noi嘉年华 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 529  Solved: 382[Submit][Statu ...

  4. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  5. OI动态规划&&优化 简单学习笔记

    持续更新!! DP的难点主要分为两类,一类以状态设计为难点,一类以转移的优化为难点. DP的类型 序列DP [例题]BZOJ2298 problem a 数位DP 常用来统计或者查找一个区间满足条件的 ...

  6. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

随机推荐

  1. tomcat7.0.47 修改tomcat窗口名称

    最近使用的是 apache - tomcat 集群,为了方便管理上想要修改tomcat命令窗口的名字来区分不同的tomcat,我在网上找了些资料,顺便总结一下,方便自己,方便他人 修改如下: 找到to ...

  2. Hbase的安装测试工作

    Hbase的安装测试工作: 安装:http://www.cnblogs.com/neverwinter/archive/2013/03/28/2985798.html 测试:http://www.cn ...

  3. IntelliJ IDEA 文件夹重命名--解决重命名后js文件引用找不到路径报404错误

    情景: 说明:ExtJS是我后来的改的名字--原来叫extjs,可是当我把在页面的引用地址改为 src="ExtJS/.."后页面就报404错误,我把它改回之前的extjs就可以( ...

  4. dede首页调用栏目内容{dedefield.content}的方法

    Dedecms的功能确实很强大,但是dedecms的全局变量有字节限制,使得我们在使用dedecms制作企业站的时候,首页无法调用大段大段的企业站. 其实dedecms还有另外一种调用大段内容的方法, ...

  5. 【BZOJ】【3524】【POI2014】Couriers

    可持久化线段树 裸可持久化线段树,把区间第K大的rank改成num即可……(往儿子走的时候不减少) 苦逼的我……MLE了一次(N*30),RE了一次(N*10)……数组大小不会开…… 最后开成N*20 ...

  6. Recommender Systems移动互联网个性化游戏推荐

    对于在线商店,主要关心两方面:1. 提升转化率(将不消费的用户转变为消费用户):2. 提升消费额(已经花钱的人,花更多的强). 对比了6种方法:1. 协同过滤:2. slope one:3. 基于内容 ...

  7. source Insight注册码

    source Insight  vesion3.50.0058 注 册码SI3US-361500-17409

  8. Chp12: Testing

    What the Interviewer is Looking for: Big Picture Understanding Knowing How the Pieces Fit Together O ...

  9. POJ2406 Power Strings KMP算法

    给你一个串s,如果能找到一个子串a,连接n次变成它,就把这个串称为power string,即a^n=s,求最大的n. 用KMP来想,如果存在的话,那么我每次f[i]的时候退的步数应该是一样多的  譬 ...

  10. ElasticSearch Java api 详解_V1.0

    /×××××××××××××××××××××××××××××××××××××××××/ Author:xxx0624 HomePage:http://www.cnblogs.com/xxx0624/ ...