bzoj1997: [Hnoi2010]Planar
2-SAT。
首先有平面图定理 m<=3*n-6,如果不满足这条件肯定不是平面图,直接退出。
然后构成哈密顿回路的边直接忽略。
把哈密顿回路当成一个圆,
如果俩条边交叉(用心去感受),只能一条边在圆内,另一条在圆外。
这个是2-sat的A,B要不同时取,要不同时不取模型。
如果俩个交叉,只能一个在内,一个在外。
和A,B俩者不能同时取有区别,需要注意。
可能存在3个方案(A,B’),(B,A’),(A’,B’)。
连方案都不要,直接tarjan完就过了。
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn = 10000 + 10;
const int maxm = 3000000 + 10; int g[maxn],v[maxm],next[maxm],eid;
int a[maxn],b[maxn],c[maxn],pos[maxn];
bool t[maxn];
int vis[maxn];
int s[maxn],sp;
int dfn[maxn],low[maxn],vid;
int color[maxn],cid;
int T,n,m; void addedge(int a,int b) {
v[eid]=b; next[eid]=g[a]; g[a]=eid++;
v[eid]=a; next[eid]=g[b]; g[b]=eid++;
} bool build() {
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) scanf("%d%d",&a[i],&b[i]);
for(int i=1;i<=n;i++) {
scanf("%d",&c[i]);
pos[c[i]]=i;
}
if(m>3*n-6) {
printf("NO\n");
return false;
}
memset(g,-1,sizeof(g)); eid=0;
memset(t,0,sizeof(t));
for(int i=1;i<=m;i++) {
a[i]=pos[a[i]];
b[i]=pos[b[i]];
if(a[i]>b[i]) swap(a[i],b[i]);
}
for(int i=1;i<=m;i++)
if(a[i]+1==b[i] || (a[i]==1&&b[i]==n)) t[i]=true;
for(int i=1;i<=m;i++) if(!t[i]) {
for(int j=1;j<=m;j++) if(i!=j && !t[j])
if(a[i]<a[j] && a[j]<b[i] && b[i]<b[j]) {
addedge((i<<1),(j<<1)|1);
addedge((i<<1)|1,(j<<1));
}
}
return true;
} void tarjan(int u) {
dfn[u]=low[u]=++vid;
vis[u]=1; s[++sp]=u; for(int i=g[u];~i;i=next[i]) {
if(!vis[v[i]]) {
tarjan(v[i]);
low[u]=min(low[u],low[v[i]]);
}
else if(vis[v[i]]==1)
low[u]=min(low[u],dfn[v[i]]);
} if(dfn[u]==low[u]) {
++cid;
do {
color[s[sp]]=cid;
vis[s[sp]]=2;
}while(s[sp--]!=u);
}
} void solve() {
memset(vis,0,sizeof(vis));
vid=cid=sp=0;
for(int i=1;i<=m;i++) if(!t[i]) {
if(!vis[i<<1]) tarjan(i<<1);
if(!vis[i<<1|1]) tarjan((i<<1|1));
}
for(int i=1;i<=m;i++) if(!t[i]&&color[i<<1]==color[i<<1|1]) {
printf("NO\n");
return;
}
printf("YES\n");
} int main() {
scanf("%d",&T);
while(T--) if(build()) solve();
return 0;
}
bzoj1997: [Hnoi2010]Planar的更多相关文章
- [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)
开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...
- bzoj千题计划231:bzoj1997: [Hnoi2010]Planar
http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...
- [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图
1997: [Hnoi2010]Planar Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2317 Solved: 850[Submit][Stat ...
- BZOJ1997 [Hnoi2010]Planar 【2-sat】
题目链接 BZOJ1997 题解 显然相交的两条边不能同时在圆的一侧,\(2-sat\)判一下就好了 但这样边数是\(O(m^2)\)的,无法通过此题 但是\(n\)很小,平面图 边数上界为\(3n ...
- BZOJ1997 [Hnoi2010]Planar (2-sat)
题意:给你一个哈密顿图,判断是不是平面图 思路:先找出哈密顿图来.哈密顿回路可以看成一个环,把边集划分成两个集合,一个在环内,一个在外.如果有两条相交边在环内,则一定不是平面图,所以默认两条相交边,转 ...
- bzoj1997 [Hnoi2010]Planar——2-SAT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 神奇的经典2-SAT问题! 对于两个相交的区间,只能一里一外连边,所以可以进行2-SA ...
- 【BZOJ1997】[Hnoi2010]Planar 2-SAT
[BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...
- bzoj1997 [HNOI2010]平面图判定Plana
bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...
- BZOJ 1997: [Hnoi2010]Planar( 2sat )
平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...
随机推荐
- JSTL标签总结
一.JSTL简介: 1.JSP标准标签库JSTL(JSP Standard Tag Library)是一个JSP标签集合,它封装了JSP应用的通用核心功能. 2.JSTL支持通用的.结构化的任务.比如 ...
- Java 执行 SQL 脚本文件
转自:http://blog.csdn.net/hongmin118/article/details/4588941 package com.unmi.db; import java.io.FileI ...
- ffmpeg 编码
编码可以简单理解为将连续的图片帧转变成视频流的过程.以H264为例给出编码的代码: int InitEncoderCodec(int width, int height) { auto enc = a ...
- java 回传参数
通过 new 创建的对象可以实现回传,如数组:自定义类对象里的参数. [数组方式] public static void main(String[] args) { try { int [] amou ...
- Codeforces Beta Round #10 D. LCIS
题目链接: http://www.codeforces.com/contest/10/problem/D D. LCIS time limit per test:1 secondmemory limi ...
- PAT-乙级-1048. 数字加密(20)
1048. 数字加密(20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CHEN, Yue 本题要求实现一种数字加密方法.首先固 ...
- cf 363A B C
A水题 ~~ 注意0输出 /************************************************************************* > Author ...
- 【Unity3D】iOS 推送实现
原地址:http://www.iappfan.com/%E3%80%90unity3d%E3%80%91ios-%E6%8E%A8%E9%80%81%E5%AE%9E%E7%8E%B0/ #impor ...
- uniqueidentifier 数据类型(转)
想要产生这种唯一标识的格式的数据: 6F9619FF-8B86-D011-B42D-00C04FC964FF 应该怎么做呢?答: uniqueidentifier 数据类型可存储 16 字节的二进制 ...
- HDU 1102 Constructing Roads(最小生成树,基础题)
注意标号要减一才为下标,还有已建设的路长可置为0 题目 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include<str ...