题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=995

Problem D: The Necklace 

My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace:

But, alas! One day, the necklace was torn and the beads were all scattered over the floor. My sister did her best to recollect all the beads from the floor, but she is not sure whether she was able to collect all of them. Now, she has come to me for help. She wants to know whether it is possible to make a necklace using all the beads she has in the same way her original necklace was made and if so in which order the bids must be put.

Please help me write a program to solve the problem.

Input

The input contains T test cases. The first line of the input contains the integer T.

The first line of each test case contains an integer N ( ) giving the number of beads my sister was able to collect. Each of the next N lines contains two integers describing the colors of a bead. Colors are represented by integers ranging from 1 to 50.

Output

For each test case in the input first output the test case number as shown in the sample output. Then if you apprehend that some beads may be lost just print the sentence ``some beads may be lost" on a line by itself. Otherwise, print N lines with a single bead description on each line. Each bead description consists of two integers giving the colors of its two ends. For , the second integer on line i must be the same as the first integer on line i + 1. Additionally, the second integer on line N must be equal to the first integer on line 1. Since there are many solutions, any one of them is acceptable.

Print a blank line between two successive test cases.

Sample Input

2
5
1 2
2 3
3 4
4 5
5 6
5
2 1
2 2
3 4
3 1
2 4

Sample Output

Case #1
some beads may be lost Case #2
2 1
1 3
3 4
4 2
2 2

这题就是判断是否存在欧拉回路。

每个点的度数必须为偶数,而且连通。

把颜色当成一个点。

递归打印路径。

//============================================================================
// Name : UVA.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================ #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <map>
#include <vector>
using namespace std;
const int MAXN=;
int F[];
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
void bing(int x,int y)
{
int t1=find(x);
int t2=find(y);
if(t1!=t2)F[t1]=t2;
}
int num[];
int G[][];
void Traverse(int u)
{
for(int v=;v<=;v++)
if(G[u][v]>)
{
G[u][v]--;
G[v][u]--;
Traverse(v);
printf("%d %d\n",v,u);
}
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int n;
scanf("%d",&T);
int iCase=;
while(T--)
{
if(iCase>)printf("\n");
iCase++;
scanf("%d",&n);
int u,v;
memset(F,-,sizeof(F));
memset(num,,sizeof(num));
memset(G,,sizeof(G));
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
num[u]++;
num[v]++;
bing(u,v);
G[u][v]++;
G[v][u]++;
}
bool flag=true;
int temp=-;
for(int i=;i<=;i++)
{
if(num[i]==)continue;
if(num[i]%)
{
flag=false;
break;
}
if(temp==-)
{
temp=find(i);
continue;
}
if(temp!=find(i))
{
flag=false;
break;
}
}
printf("Case #%d\n",iCase);
if(!flag)
{
printf("some beads may be lost\n");
continue;
}
for(int i=;i<=;i++)
if(num[i]!=)
{
u=i;
break;
}
Traverse(u);
}
return ;
}

UVA 10054 The Necklace(欧拉回路,打印路径)的更多相关文章

  1. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  2. Uva 10054 欧拉回路 打印路径

    看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1 ...

  3. 【欧拉回路】UVA - 10054 The Necklace

    题目大意: 一个环被切割成了n个小块,每个小块有头尾两个关键字,表示颜色. 目标是判断给出的n个小块能否重构成环,能则输出一种可行解(按重构次序输出n个色块的头尾颜色).反之输出“some beads ...

  4. UVA 1626 区间dp、打印路径

    uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...

  5. UVA 624 (0 1背包 + 打印路径)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<ctype.h> #i ...

  6. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

  7. uva 10054 The Necklace(欧拉回路)

    The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads ...

  8. UVa 10054 The Necklace(无向图欧拉回路)

    My little sister had a beautiful necklace made of colorful beads. Two successive beads in the neckla ...

  9. UVA 10054 The Necklace (无向图的欧拉回路)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5405904.html 题意: 妹妹有一条项链,这条项链由许多珠子串在一起组成,珠子是彩色的,两个连续的珠子的交汇点颜色相同 ...

随机推荐

  1. Android权限安全(6)四大组件自定义权限示例

    Activity service ContentProvider BroadcastReceiver

  2. C# 对象与JSON串互相转换

    using System;using System.IO;using System.Text;using Newtonsoft.Json; namespace OfflineAcceptControl ...

  3. 面试题_76_to_81_Java 最佳实践的面试问题

    包含 Java 中各个部分的最佳实践,如集合,字符串,IO,多线程,错误和异常处理,设计模式等等. 76)Java 中,编写多线程程序的时候你会遵循哪些最佳实践?(答案)这是我在写Java 并发程序的 ...

  4. Effective C++学习笔记 条款06:如不想使用编译器自动生成的函数,就该明确拒绝

    一.为驳回编译器自动提供的机能,可将相应成员函数声明为private并且不予实现.(如果你仅仅是自己不实现的话,编译器会帮你实现) 如: class A { public: A(const strin ...

  5. Akka的Actor模型及使用实例

    本文的绝大部分内容转载自rerun.me这一blog,老外写的东西就是好啊. ACTORS介绍 Anyone who has done multithreading in the past won't ...

  6. PHP中 对象自动调用的方法:__set()、__get()、__tostring()

    总结: (1)__get($property_name):获取私有属性$name值时,此对象会自动调用该方法,将属性name值传给参数$property_name,通过这个方法的内部 执行,返回我们传 ...

  7. web请求报出 “超过了最大请求长度” 【注意:重启IIS】

    摘自:http://www.cnblogs.com/loalongblogs/archive/2012/10/16/2726372.html web请求报出 “超过了最大请求长度”   错误原因:as ...

  8. ZOJ 2587 Unique Attack (最小割唯一性)

    题意 判断一个无向图的割是否唯一 思路 错误思路:一开始想的是判断割边是否都是关键割边,那既然割边两端点能连通S.T点的边是关键边,那么只要遇到有某个边两端点不连通S or T则这条边就不是关键割边( ...

  9. 【JS】<a>标签调用js中函数的几种方法

    我们常用的在a标签中有点击事件: a href="javascript:js_method();" 这是我们平台上常用的方法,但是这种方法在传递this等参数的时候很容易出问题,而 ...

  10. 向Oracle中插入记录时,出现“Oracle.DataAccess.Client.OracleException ORA-00933 ”错误

    错误信息的弹出框