题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=995

Problem D: The Necklace 

My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace:

But, alas! One day, the necklace was torn and the beads were all scattered over the floor. My sister did her best to recollect all the beads from the floor, but she is not sure whether she was able to collect all of them. Now, she has come to me for help. She wants to know whether it is possible to make a necklace using all the beads she has in the same way her original necklace was made and if so in which order the bids must be put.

Please help me write a program to solve the problem.

Input

The input contains T test cases. The first line of the input contains the integer T.

The first line of each test case contains an integer N ( ) giving the number of beads my sister was able to collect. Each of the next N lines contains two integers describing the colors of a bead. Colors are represented by integers ranging from 1 to 50.

Output

For each test case in the input first output the test case number as shown in the sample output. Then if you apprehend that some beads may be lost just print the sentence ``some beads may be lost" on a line by itself. Otherwise, print N lines with a single bead description on each line. Each bead description consists of two integers giving the colors of its two ends. For , the second integer on line i must be the same as the first integer on line i + 1. Additionally, the second integer on line N must be equal to the first integer on line 1. Since there are many solutions, any one of them is acceptable.

Print a blank line between two successive test cases.

Sample Input

2
5
1 2
2 3
3 4
4 5
5 6
5
2 1
2 2
3 4
3 1
2 4

Sample Output

Case #1
some beads may be lost Case #2
2 1
1 3
3 4
4 2
2 2

这题就是判断是否存在欧拉回路。

每个点的度数必须为偶数,而且连通。

把颜色当成一个点。

递归打印路径。

//============================================================================
// Name : UVA.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================ #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <map>
#include <vector>
using namespace std;
const int MAXN=;
int F[];
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
void bing(int x,int y)
{
int t1=find(x);
int t2=find(y);
if(t1!=t2)F[t1]=t2;
}
int num[];
int G[][];
void Traverse(int u)
{
for(int v=;v<=;v++)
if(G[u][v]>)
{
G[u][v]--;
G[v][u]--;
Traverse(v);
printf("%d %d\n",v,u);
}
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int n;
scanf("%d",&T);
int iCase=;
while(T--)
{
if(iCase>)printf("\n");
iCase++;
scanf("%d",&n);
int u,v;
memset(F,-,sizeof(F));
memset(num,,sizeof(num));
memset(G,,sizeof(G));
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
num[u]++;
num[v]++;
bing(u,v);
G[u][v]++;
G[v][u]++;
}
bool flag=true;
int temp=-;
for(int i=;i<=;i++)
{
if(num[i]==)continue;
if(num[i]%)
{
flag=false;
break;
}
if(temp==-)
{
temp=find(i);
continue;
}
if(temp!=find(i))
{
flag=false;
break;
}
}
printf("Case #%d\n",iCase);
if(!flag)
{
printf("some beads may be lost\n");
continue;
}
for(int i=;i<=;i++)
if(num[i]!=)
{
u=i;
break;
}
Traverse(u);
}
return ;
}

UVA 10054 The Necklace(欧拉回路,打印路径)的更多相关文章

  1. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  2. Uva 10054 欧拉回路 打印路径

    看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1 ...

  3. 【欧拉回路】UVA - 10054 The Necklace

    题目大意: 一个环被切割成了n个小块,每个小块有头尾两个关键字,表示颜色. 目标是判断给出的n个小块能否重构成环,能则输出一种可行解(按重构次序输出n个色块的头尾颜色).反之输出“some beads ...

  4. UVA 1626 区间dp、打印路径

    uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...

  5. UVA 624 (0 1背包 + 打印路径)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<ctype.h> #i ...

  6. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

  7. uva 10054 The Necklace(欧拉回路)

    The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads ...

  8. UVa 10054 The Necklace(无向图欧拉回路)

    My little sister had a beautiful necklace made of colorful beads. Two successive beads in the neckla ...

  9. UVA 10054 The Necklace (无向图的欧拉回路)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5405904.html 题意: 妹妹有一条项链,这条项链由许多珠子串在一起组成,珠子是彩色的,两个连续的珠子的交汇点颜色相同 ...

随机推荐

  1. RecyclerView(6)自定义RecyclerView.LayoutManager

    A LayoutManager is responsible for measuring and positioning item views within a RecyclerView as wel ...

  2. spring事务传播机制实例讲解

    http://kingj.iteye.com/blog/1680350   spring事务传播机制实例讲解 博客分类:   spring java历险     天温习spring的事务处理机制,总结 ...

  3. 1741. Communication Fiend(dp)

    刷个简单的DP缓缓心情 1A #include <iostream> #include<cstdio> #include<cstring> #include< ...

  4. 宏btr_pcur_open_on_user_rec

    参考http://wqtn22.iteye.com/blog/1820436 http://blog.jcole.us/2013/01/10/btree-index-structures-in-inn ...

  5. 转载:Unobtrusive JavaScript in ASP.NET MVC 3 隐式的脚本在MVC3

    Unobtrusive JavaScript 是什么? <!--以下是常规Javascript下写出来的Ajax--> <div id="test"> &l ...

  6. linux面试题1

    一.填空题:1. 在Linux系统中,以 文件 方式访问设备 .2. Linux内核引导时,从文件 /etc/fstab 中读取要加载的文件系统.3. Linux文件系统中每个文件用 i节点 来标识. ...

  7. Liunx系统学习一,liunx系统的目录结构及含义

    LIUNX系统目录结构: “/” ===>这是linux文件系统的入口,也是整个linux文件系统的根目录,linux不同于windows,没有所谓的C,D,E盘,整个liunx只有一个根分区 ...

  8. css3属性及事例

    在看网上别的前端大牛的作品时,总会有新的收获,我想很多人应该都知道box-shadow,但是不知道有没有接触过这个 box-shadow: 2px 2px 4px rgba(0,0,0,0.4)  , ...

  9. iOS 获取已连接的wifi信息

    转:http://blog.csdn.net/marujunyy/article/details/16843173 首先需要   #import <SystemConfiguration/Cap ...

  10. Ubuntu消息菜单(MessagingMenu)API

    应用程序可以注册在消息菜单里显示消息,它也可以使用全局聊天状态项目. 注册 应用程序要在消息菜单里显示消息,必须满足以下条件: $HOME/.config/indicators/messages/ap ...