题目链接:

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=995

Problem D: The Necklace 

My little sister had a beautiful necklace made of colorful beads. Two successive beads in the necklace shared a common color at their meeting point. The figure below shows a segment of the necklace:

But, alas! One day, the necklace was torn and the beads were all scattered over the floor. My sister did her best to recollect all the beads from the floor, but she is not sure whether she was able to collect all of them. Now, she has come to me for help. She wants to know whether it is possible to make a necklace using all the beads she has in the same way her original necklace was made and if so in which order the bids must be put.

Please help me write a program to solve the problem.

Input

The input contains T test cases. The first line of the input contains the integer T.

The first line of each test case contains an integer N ( ) giving the number of beads my sister was able to collect. Each of the next N lines contains two integers describing the colors of a bead. Colors are represented by integers ranging from 1 to 50.

Output

For each test case in the input first output the test case number as shown in the sample output. Then if you apprehend that some beads may be lost just print the sentence ``some beads may be lost" on a line by itself. Otherwise, print N lines with a single bead description on each line. Each bead description consists of two integers giving the colors of its two ends. For , the second integer on line i must be the same as the first integer on line i + 1. Additionally, the second integer on line N must be equal to the first integer on line 1. Since there are many solutions, any one of them is acceptable.

Print a blank line between two successive test cases.

Sample Input

2
5
1 2
2 3
3 4
4 5
5 6
5
2 1
2 2
3 4
3 1
2 4

Sample Output

Case #1
some beads may be lost Case #2
2 1
1 3
3 4
4 2
2 2

这题就是判断是否存在欧拉回路。

每个点的度数必须为偶数,而且连通。

把颜色当成一个点。

递归打印路径。

//============================================================================
// Name : UVA.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================ #include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <map>
#include <vector>
using namespace std;
const int MAXN=;
int F[];
int find(int x)
{
if(F[x]==-)return x;
else return F[x]=find(F[x]);
}
void bing(int x,int y)
{
int t1=find(x);
int t2=find(y);
if(t1!=t2)F[t1]=t2;
}
int num[];
int G[][];
void Traverse(int u)
{
for(int v=;v<=;v++)
if(G[u][v]>)
{
G[u][v]--;
G[v][u]--;
Traverse(v);
printf("%d %d\n",v,u);
}
}
int main()
{
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int T;
int n;
scanf("%d",&T);
int iCase=;
while(T--)
{
if(iCase>)printf("\n");
iCase++;
scanf("%d",&n);
int u,v;
memset(F,-,sizeof(F));
memset(num,,sizeof(num));
memset(G,,sizeof(G));
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
num[u]++;
num[v]++;
bing(u,v);
G[u][v]++;
G[v][u]++;
}
bool flag=true;
int temp=-;
for(int i=;i<=;i++)
{
if(num[i]==)continue;
if(num[i]%)
{
flag=false;
break;
}
if(temp==-)
{
temp=find(i);
continue;
}
if(temp!=find(i))
{
flag=false;
break;
}
}
printf("Case #%d\n",iCase);
if(!flag)
{
printf("some beads may be lost\n");
continue;
}
for(int i=;i<=;i++)
if(num[i]!=)
{
u=i;
break;
}
Traverse(u);
}
return ;
}

UVA 10054 The Necklace(欧拉回路,打印路径)的更多相关文章

  1. UVA 10054 the necklace 欧拉回路

    有n个珠子,每颗珠子有左右两边两种颜色,颜色有1~50种,问你能不能把这些珠子按照相接的地方颜色相同串成一个环. 可以认为有50个点,用n条边它们相连,问你能不能找出包含所有边的欧拉回路 首先判断是否 ...

  2. Uva 10054 欧拉回路 打印路径

    看是否有欧拉回路 有的话打印路径 欧拉回路存在的条件: 如果是有向图的话 1.底图必须是连通图 2.最多有两个点的入度不等于出度 且一个点的入度=出度+1 一个点的入度=出度-1 如果是无向图的话 1 ...

  3. 【欧拉回路】UVA - 10054 The Necklace

    题目大意: 一个环被切割成了n个小块,每个小块有头尾两个关键字,表示颜色. 目标是判断给出的n个小块能否重构成环,能则输出一种可行解(按重构次序输出n个色块的头尾颜色).反之输出“some beads ...

  4. UVA 1626 区间dp、打印路径

    uva 紫书例题,这个区间dp最容易错的应该是(S)这种匹配情况,如果不是题目中给了提示我就忽略了,只想着左右分割忘记了这种特殊的例子. dp[i][j]=MIN{dp[i+1][j-1] | if( ...

  5. UVA 624 (0 1背包 + 打印路径)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<ctype.h> #i ...

  6. UVA 531 - Compromise(dp + LCS打印路径)

      Compromise  In a few months the European Currency Union will become a reality. However, to join th ...

  7. uva 10054 The Necklace(欧拉回路)

    The Necklace  My little sister had a beautiful necklace made of colorful beads. Two successive beads ...

  8. UVa 10054 The Necklace(无向图欧拉回路)

    My little sister had a beautiful necklace made of colorful beads. Two successive beads in the neckla ...

  9. UVA 10054 The Necklace (无向图的欧拉回路)

    本文链接:http://www.cnblogs.com/Ash-ly/p/5405904.html 题意: 妹妹有一条项链,这条项链由许多珠子串在一起组成,珠子是彩色的,两个连续的珠子的交汇点颜色相同 ...

随机推荐

  1. $.post()

    定义和用法 post() 方法通过 HTTP POST 请求从服务器载入数据. jQuery.post(url,data,success(data, textStatus, jqXHR),dataTy ...

  2. TCSRM 593 div2(1000)(dp)

    Problem Statement      The pony Rainbow Dash wants to choose her pet. There are N animals who want t ...

  3. php.ini配置中文详解

    ;;;;;;;;;;; ; 警告 ; ;;;;;;;;;;; ; 此配置文件是对于新安装的PHP的默认设置. ; 默认情况下,PHP使用此配置文件安装 ; 此配置针对开发目的,并且*不是*针对生产环境 ...

  4. Java [Leetcode 234]Palindrome Linked List

    题目描述: Given a singly linked list, determine if it is a palindrome. Follow up:Could you do it in O(n) ...

  5. live555学习之基本类介绍及计划任务深度探讨

    liveMedia项目的源代码包括四个基本的库,各种测试代码以及Media Server.四个基本的库分别是: UsageEnvironment&TaskScheduler, groupsoc ...

  6. 业界最具影响力MySQL精品文章荟萃(300篇)

    MySQL是一种关联数据库管理系统,SQL语言是用于访问数据库的最常用标准化语言.本文档收集的资料有MySQL数据库备份与恢复,配置,解决方案等,供大家方便统一阅读. 博客专题 1     MySQL ...

  7. Android裁剪固定大小头像的功能

    转载自: http://www.eoeandroid.com/thread-497277-1-1.html 效果很好,特意转载过来记录一下,加深一下印象. 效果就是 :中间的方框不动,可以拖动图片,选 ...

  8. 【转】setTag()/getTag()

    原文网址:http://www.cnblogs.com/topcoderliu/archive/2011/06/07/2074419.html View中的setTag(Onbect)表示给View添 ...

  9. Oracle DBA 的常用Unix参考手册(二)

    9.AIX下显示CPU数量    # lsdev -C|grep Process|wc -l10.Solaris下显示CPU数量# psrinfo -v|grep "Status of pr ...

  10. iOS-利用AFNetworking(AFN 1.x)-实现文件断点下载

    转:http://www.kaifazhe.com/ios_school/380066.html 官方建议AFN的使用方法 1. 定义一个全局的AFHttpClient:包含有 1> baseU ...