bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)
Description
.jpg)
Input
第一行包含一个正整数testcase,表示当前测试数据的测试点编号。保证1≤testcase≤20。
第二行包含三个整数N,M,T,分别表示节点数、初始边数、操作数。第三行包含N个非负整数表示 N个节点上的权值。
接下来 M行,每行包含两个整数x和 y,表示初始的时候,点x和点y 之间有一条无向边, 接下来 T行,每行描述一个操作,格式为“Q x y k”或者“L x y ”,其含义见题目描述部分。
Output
对于每一个第一类操作,输出一个非负整数表示答案。
Sample Input
8 4 8
1 1 2 2 3 3 4 4
4 7
1 8
2 4
2 1
Q 8 7 3 Q 3 5 1
Q 10 0 0
L 5 4
L 3 2 L 0 7
Q 9 2 5 Q 6 1 6
Sample Output
2
1
4
2
HINT
对于第一个操作 Q 8 7 3,此时 lastans=0,所以真实操作为Q 8^0 7^0 3^0,也即Q 8 7 3。点8到点7的路径上一共有5个点,其权值为4 1 1 2 4。这些权值中,第三小的为 2,输出 2,lastans变为2。对于第二个操作 Q 3 5 1 ,此时lastans=2,所以真实操作为Q 3^2 5^2 1^2 ,也即Q 1 7 3。点1到点7的路径上一共有4个点,其权值为 1 1 2 4 。这些权值中,第三小的为2,输出2,lastans变为 2。之后的操作类似。
.jpg)
【思路】
主席树+倍增lca+启发式合并
如果没有连边操作的话就是luo主席树。两棵树要相连,那一棵在上面无所谓,因为我们要遍历处于下方的树的所有节点所以我们采用启发式合并,即每次选择结点数更小的树放在下面,然后重建每一个结点。
【代码】
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = ;
const int M = *N;
const int D = ; struct Tnode {
int sum,lc,rc;
} T[M]; int n,m,q,sz,rt[N];
int p[N],siz[N];
int fa[N][D],hash[N],dep[N];
int v[N],tot;
vector<int> g[N]; void read(int& x) {
char c=getchar();
int f=;x=;
while(!isdigit(c)) {
if(c=='-') f=-; c=getchar();
}
while(isdigit(c))
x=x*+c-'',c=getchar();
x*=f;
} int ifind(int u)
{
while(fa[u][]) u=fa[u][];
return u;
}
void insert(int l,int r,int x,int& y,int num)
{
T[y=++sz]=T[x]; T[y].sum++;
if(l==r) return ;
int mid=(l+r)>>;
if(num<=mid) insert(l,mid,T[x].lc,T[y].lc,num);
else insert(mid+,r,T[x].rc,T[y].rc,num);
}
void dfs(int u,int f)
{
dep[u]=dep[f]+; fa[u][]=f; siz[u]=;
insert(,tot,rt[f],rt[u],v[u]);
FOR(i,,D-) //p1
fa[u][i]=fa[fa[u][i-]][i-];
FOR(i,,(int)g[u].size()-) {
int v=g[u][i];
if(v!=f) {
dfs(v,u);
siz[u]+=siz[v];
}
}
}
int lca(int u,int v)
{
if(dep[u]<dep[v]) swap(u,v);
int t=dep[u]-dep[v];
FOR(j,,D-)
if(t&(<<j)) u=fa[u][j];
if(u==v) return u;
for(int j=D-;j>=;j--)
if(fa[u][j]!=fa[v][j]) u=fa[u][j],v=fa[v][j];
return fa[u][];
}
int query(int l,int r,int a,int b,int c,int d,int rk)
{
if(l==r) return l;
int mid=(l+r)>>;
int now=T[T[a].lc].sum+T[T[b].lc].sum-T[T[c].lc].sum-T[T[d].lc].sum;
if(rk<=now) return query(l,mid,T[a].lc,T[b].lc,T[c].lc,T[d].lc,rk);
else return query(mid+,r,T[a].rc,T[b].rc,T[c].rc,T[d].rc,rk-now);
}
int query(int x,int y,int z)
{
int c=lca(x,y);
return query(,tot,rt[x],rt[y],rt[c],rt[fa[c][]],z);
} int main()
{
int kase; read(kase);
read(n),read(m),read(q);
FOR(i,,n) {
read(v[i]); hash[i]=v[i];
fa[i][]=;
}
sort(hash+,hash+n+);
tot=unique(hash+,hash+n+)-hash-;
FOR(i,,n)
v[i]=lower_bound(hash+,hash+tot+,v[i])-hash;
char op[];
int ans=,x,y,z;
FOR(i,,m) {
read(x),read(y);
g[x].push_back(y);
g[y].push_back(x);
}
FOR(i,,n) if(!fa[i][]) dfs(i,);
FOR(i,,q) {
scanf("%s",op);
read(x),read(y);
x^=ans; y^=ans;
if(op[]=='Q') {
read(z);
z^=ans;
printf("%d\n",ans=hash[query(x,y,z)]);
} else {
int fx=ifind(x),fy=ifind(y);
if(siz[fx]<siz[fy])
swap(fx,fy),swap(x,y);
siz[fx]+=siz[fy];
g[x].push_back(y);
g[y].push_back(x);
dfs(y,x);
}
}
return ;
}
bzoj 3123 [Sdoi2013]森林(主席树,lca,启发式合并)的更多相关文章
- BZOJ3123[Sdoi2013]森林——主席树+LCA+启发式合并
题目描述 输入 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数.第三行包含N个非负 ...
- BZOJ 3123: [Sdoi2013]森林 [主席树启发式合并]
3123: [Sdoi2013]森林 题意:一个森林,加边,询问路径上k小值.保证任意时刻是森林 LCT没法搞,树上kth肯定要用树上主席树 加边?启发式合并就好了,小的树dfs重建一下 注意 测试点 ...
- Bzoj 3123: [Sdoi2013]森林(主席树+启发式合并)
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当前 ...
- luoguP3302 [SDOI2013]森林 主席树 启发式合并
题目链接 luoguP3302 [SDOI2013]森林 题解 本来这题树上主席树暴力启发式合并就完了 结果把lca写错了... 以后再也不这么写了 复杂度\(O(nlog^2n)\) "f ...
- bzoj 3123 [Sdoi2013]森林(主席树+启发式合并+LCA)
Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...
- 【BZOJ3123】[Sdoi2013]森林 主席树+倍增LCA+启发式合并
[BZOJ3123][Sdoi2013]森林 Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整 ...
- [BZOJ3123][Sdoi2013]森林 主席树+启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当 ...
- ●BZOJ 3123 [Sdoi2013]森林
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3123 题解: 主席树,在线,启发式合并 简单版(只有询问操作):[2588: Spoj 10 ...
- bzoj 3123: [Sdoi2013]森林(45分暴力)
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4184 Solved: 1235[Submit][Status ...
随机推荐
- AForm
相信大部分程序员都接触过表单,表单是收集用户输入的不二之选,但是表单的开发又是最繁琐.最复杂的,简单地说,开发表单你需要涉及到很多知识: 布局,表单如何布局排版,看起来最清晰整洁,且符合用户体验 控件 ...
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- 团体程序设计天梯赛-练习集L1-024. 后天
L1-024. 后天 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 陈越 如果今天是星期三,后天就是星期五:如果今天是星期六,后天就 ...
- hdu 1213
简单并查集 #include <cstdio> #include <cstring> #define maxn 30005 int fa[maxn],ans[maxn],n,m ...
- Eclipse 插件开发 —— 深入理解查找(Search)功能及其扩展点
引言 查找功能是计算机语言开发环境 / 平台的一个非常重要的特性.Eclipse 也不例外,它提供了丰富的查找功能(用户可以输入正则表达式或任意字符串,指定查找范围和匹配选项等等),并且提供了简单易用 ...
- Codeigniter开发技巧:连接多个数据库(可实现DB读写分离)
在开发中,我们有时候会遇到在同一程序中链接多个数据库的需求,这对Codeigniter框架来说是很简单的,我们只需要在 database.php文件中配置少许参数即可. 默认情况下,CI配置的是链接一 ...
- weblogic集群无法启动,提示java.lang.NumberFormatException
我有两台weblogic9.2做的集群A,B,A是主服务器,B是受管服务器,后来通过脚本启动weblogic服务,A服务启动异常,经查后台的日志文件发现报错消息如下: WebLogic Server ...
- Qt之自定义控件(开关按钮)Qt之模拟时钟
http://blog.csdn.net/u011012932/article/details/52164289 http://blog.csdn.net/u011012932/article/det ...
- Android:activity跳转过渡效果
放在startActivity(intent);后面 overridePendingTransition(android.R.anim.fade_in,android.R.anim.fade_out) ...
- yii2的安装
yii2也是依赖于composer, 就像laravel, 所以先安装composer, 如果安装不上composer可以看laravel安装的文章. 安装好composer之后安装一个插件 comp ...