被数论怒虐了一天 心力憔悴啊 感觉脑细胞已经快消耗殆尽了>_< 但是今天还是会了很多之前觉得特别神的东西

比如BSGS 之前听了两遍 好像都因为听得睡着了没听懂-。- 今天终于硬着头皮学会了~ 做个总结吧 免得又忘记- -

BSGS:

BSGS就是求 A^x=B(mod C) 0<=x<C的解(C为素数)

做一个转换 设m*i+j=x (m=trunc(sqrt(C)))

将A^i(0<=i<m) 存入hash表中(i,A^i)

这样我们就能O(1)求出A^x=B 对应的x的值

设AA=(A^m^i)mod C 枚举i的值(0<=i<m)

原方程就变为 AA*(A^j)=B(mod C)

因为C为素数 所以(AA,C)=1

故 可以用拓展欧几里德求出A^j值为多少 再在hash中找A^j对应的j 答案get

其实不难发现这是个神奇的分块思想 将n分为√n块

预处理使得计算每块的复杂度降为O(1) 到达加速

拓展BSGS:

上题中有一个限制条件 C为素数 如果没有这个条件要怎么做呢

以下是AC大神的做法 由AK大神跟我讲解(orz两个神犇)

A^x=B(mod C)

先将这个方程转换为 A^x+Cy=B

设 A’=A/(A,C),C'=C/((A,C)^z) (C’与(A,C)^z互质)

将方程左右都除以(A,C)^z (如果B不能整除(A,C)^z 则无解)

会得到:

(A'^z)*A^(x-z)+C'y=B/((A,C)^z)

这时 将A'^z视为系数 A与C’互质就能用上面的方法求解了

【数论】Baby Step Giant Step的更多相关文章

  1. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  2. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  3. 【POJ2417】baby step giant step

    最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...

  4. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  5. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  6. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  7. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  8. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  9. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  10. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

随机推荐

  1. ie6 iframe src="javascript:" 报安全警报问题

    <iframe id="shuaka_iframe" class="embed-page-iframe" data-src="https://w ...

  2. EXPORT_SYMBOL的作用是什么

    http://www.cnblogs.com/riskyer/p/3221805.html EXPORT_SYMBOL只出现在2.6内核中,在2.4内核默认的非static 函数和变量都会自动 导入到 ...

  3. 镜面电火花EDM加工技术资料,模具行业的人应该好好看看!

    目前镜面电火花加工技术在精密型腔模具制造中逐步得以推广.本文就企业中镜面电火花加工应用的关键环节,结合实践分析了影响镜面加工性能的因素.通过控制各个工艺环节,可有效实现高质量.高效率的镜面电火花加工. ...

  4. 编译qt-mobility

    因为用到了qt-mobility,必须自己编译一下,参考列出了参考资料. 参考: 1. windows下编译qt-mobility  http://hi.baidu.com/xchinux/blog/ ...

  5. Trainning Guide, Data Structures, Example

    最近在复习数据结构,发现这套题不错,题目质量好,覆盖广,Data Structures部分包括Example,以及简单,中等,难三个部分,这几天把Example的做完了, 摘要如下: 通过这几题让我复 ...

  6. ssh-keygen的使用方法

    一.概述 1.就是为了让两个linux机器之间使用ssh不需要用户名和密码.采用了数字签名RSA或者DSA来完成这个操作 2.模型分析 假设 A (192.168.20.59)为客户机器,B(192. ...

  7. 微信5.4 AndroidManifest.xml

    <?xml version="1.0" encoding="utf-8" ?> - <manifest android:versionCode ...

  8. C++ RAII手法实例,不使用智能指针

    /* * ===================================================================================== * * Filen ...

  9. eclipse为hibernate.cfg.xml添加自动提示【转】

    在hibernate.cfg.xml头部部分如下: <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate C ...

  10. CentOS升级git

    1.首先查看下当前的版本 [root@localhost ~]# git --versiongit version 1.8.2.1 2.尝试进行升级 [root@localhost ~]# yum u ...