数据结构之平衡二叉树(AVL)
一:平衡二叉树特点:
平衡二叉树(Balanced binary tree)是由阿德尔森-维尔斯和兰迪斯(Adelson-Velskii and Landis)于1962年首先提出的,所以又称为AVL树。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
(1)左右子树深度之差的绝对值不超过1;
(2)左右子树仍然为平衡二叉树.
平衡因子: BF=左子树深度-右子树深度.
平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。
二、平衡二叉树算法思想
若 向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的 链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
(1)LL型平衡旋转法
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。 即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。而原来B的右子树则变成A的左子树。

(2)RR型平衡旋转法
由于在A的右孩子C 的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。而原来C的左子树则变成A的右子树。

(3)LR型平衡旋转法
由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。即先使之成为LL型,再按LL型处理。

如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为LL型,再按LL型处理成平衡型。
(4)RL型平衡旋转法
由于在A的右孩子C的左子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行两次旋转操作(先顺时针,后逆时针),即先将A结点的右孩子C的左子树的根结点D向右上旋转提升到C结点的位置,然后再把该D结点向左上旋转提升到A结点的位置。即先使之成为RR型,再按RR型处理。

如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为RR型,再按RR型处理成平衡型。
平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。注意的是,左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。
如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者 bf == -2的节点。
参考:
一步一步写平衡二叉树(AVL树) http://www.cppblog.com/cxiaojia/archive/2012/08/20/187776.html
平衡二叉树 http://kimibob.blog.163.com/blog/static/163873051201153093851369/
数据结构之平衡二叉树(AVL)的更多相关文章
- 【数据结构】平衡二叉树—AVL树
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增 ...
- 数据结构与算法--从平衡二叉树(AVL)到红黑树
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...
- 数据结构之平衡二叉树(AVL树)
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了 ...
- 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...
- 平衡二叉树AVL - 插入节点后旋转方法分析
平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根 ...
- 数据结构与算法——AVL树类的C++实现
关于AVL树的简单介绍能够參考:数据结构与算法--AVL树简单介绍 关于二叉搜索树(也称为二叉查找树)能够參考:数据结构与算法--二叉查找树类的C++实现 AVL-tree是一个"加上了额外 ...
- 二叉查找树、平衡二叉树(AVL)、B+树、联合索引
1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访 ...
- Java 树结构实际应用 四(平衡二叉树/AVL树)
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在. 左边 BST 存在的问题分析: ...
- 数据结构快速回顾——平衡二叉树 AVL (转)
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵 ...
- 算法与数据结构(十一) 平衡二叉树(AVL树)
今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...
随机推荐
- component to string
component to string string to component ObjectTextToBinary ObjectBinaryToText ReadComponent #include ...
- 转】MyEclipse使用总结——设置MyEclipse开发项目时使用的JDK
原博文出自于: http://www.cnblogs.com/xdp-gacl/p/3927677.html 感谢! 安装好MyEclipse之后,在MyEclipse中开发项目时,默认使用的是MyE ...
- Accessor Search Implementation Details
[Accessor Search Implementation Details] Key-value coding attempts to use accessor methods to get an ...
- C++11右值引用
[C++11右值引用] 1.什么是左值?什么是右值? 左值是表达式结束后依然存在的对象:右值是表达式结束时就不再存在的对象. 2.std::move的作用是什么? std::move用于把任意类型转化 ...
- HDU 5432 Rikka with Tree (BestCoder Round #53 (div.2))
http://acm.hdu.edu.cn/showproblem.php?pid=5423 题目大意:给你一个树 判断这棵树是否是独特的 一颗树是独特的条件:不存在一颗和它本身不同但相似的树 两颗树 ...
- 架设证书服务器 及 让IIS启用HTTPS服务
一.架设证书服务器(CA服务)1.在系统控制面板中,找到“添加/删除程序”,点击左侧的“添加/删除windows组件”,在列表中找到“证书服务”,安装之.2.CA类型,这里有四种选择,这里以“独立根C ...
- HDU 3333 Turing Tree (树状数组)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3333 题意就是询问区间不同数字的和. 比较经典的树状数组应用. //#pragma comment(l ...
- java去掉jsp标签内容的方法
//去掉内容的标签 public static String removeTag(String count){ try { int tagCheck=-1; do { i ...
- jQuery实现等比例缩放大图片让大图片自适应页面布局
通常我们处理缩略图是使用后台代码(PHP..net.Java等)根据大图片生成一定尺寸的缩略图,来供前台页面调用,当然也有使用前台javascript脚本将加载后的大图强行缩放,变成所谓的缩略图,这种 ...
- 图片懒加载 lazyload
添加引用 <script type="text/javascript" src="lazyload/yahoo-dom-event.js">< ...