链接:http://agc001.contest.atcoder.jp/tasks/agc001_c

题解(官方):

We use the following well-known fact about trees.
Let T be a tree, and let D be the diameter of the tree.

• If D is even, there exists an vertex v of T such that for each vertex w in
T, the distance between w and v is at most D/2.

• If D is odd, there exists an edge e of T such that for each vertex w in T,
the distance between w and one of the endpoints of e is at most (D −1)/2.
Here v and e are called centers of the tree.

The proof of this fact is not very hard. See the picture below. The blue
vertices are the endpoints of the diameters, and the red vertex (or edge) is in
the middle of the diameter. This red vertex is the center of the tree; if there
is a vertex v such that dist(v, red) > D/2, the distance between v and one of
blue points will be more than D (because the distance between the red point
and each blue point is D/2). The proof for odd case is similar.

Now the problem can be solved in the following way (we only describe the
solution for the even case, but the odd case is similar). Choose a vertex x in
the tree (this will be the center after removal of vertices) and count the number
of vertices y such that dist(x, y) > D/2. If we remove all such y, the diameter
of the remaining graph will be at most D. Thus, we can try all N vertices as x
and the answer is the minimum count of such y. The solution works in O(N^2).

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <map>
#include <queue>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 2e3+;
const int INF = 0x3f3f3f3f;
const LL mod = 1e9+;
typedef pair<int ,int >pii;
struct Edge{
int v,next;
}edge[N<<];
int head[N],tot,n,k;
void add(int u,int v){
edge[tot].v=v;
edge[tot].next=head[u];
head[u]=tot++;
}
bool vis[N];
int d[N];
void bfs(int s,int f){
queue<int>q;
while(!q.empty())q.pop();
d[s]=;vis[s]=true;
q.push(s);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i = head[u];~i;i=edge[i].next){
int v=edge[i].v;
if(vis[v]||v==f)continue;
d[v]=d[u]+;
vis[v]=true;
q.push(v);
}
}
}
int solveodd(int u,int v){
memset(d,INF,sizeof(d));
memset(vis,,sizeof(vis));
bfs(u,v);bfs(v,u);
int ret=;
for(int i=;i<=n;++i)
if(d[i]>k)++ret;
return ret;
}
int solveeven(int u){
memset(d,INF,sizeof(d));
memset(vis,,sizeof(vis));
bfs(u,);
int ret=;
for(int i=;i<=n;++i)
if(d[i]>k)++ret;
return ret;
}
int main(){
scanf("%d%d",&n,&k);
memset(head,-,sizeof(head));
for(int i=;i<=n-;++i){
int u,v;
scanf("%d%d",&u,&v);
add(u,v);add(v,u);
}
int ret=INF;
if(k&){
k>>=;
for(int i=;i<tot;i+=)
ret=min(ret,solveodd(edge[i].v,edge[i+].v));
}
else{
k>>=;
for(int i=;i<=n;++i)
ret=min(ret,solveeven(i));
}
printf("%d\n",ret);
return ;
}

AtCoder Grand Contest 001 C Shorten Diameter 树的直径知识的更多相关文章

  1. [Atcoder Grand Contest 001] Tutorial

    Link: AGC001 传送门 A: …… #include <bits/stdc++.h> using namespace std; ; ]; int main() { scanf(& ...

  2. AtCoder Grand Contest 001 D - Arrays and Palindrome

    题目传送门:https://agc001.contest.atcoder.jp/tasks/agc001_d 题目大意: 现要求你构造两个序列\(a,b\),满足: \(a\)序列中数字总和为\(N\ ...

  3. Atcoder Grand Contest 001 F - Wide Swap(拓扑排序)

    Atcoder 题面传送门 & 洛谷题面传送门 咦?鸽子 tzc 来补题解了?奇迹奇迹( 首先考虑什么样的排列可以得到.我们考虑 \(p\) 的逆排列 \(q\),那么每次操作的过程从逆排列的 ...

  4. AtCoder Grand Contest 001 题解

    传送门 \(A\) 咕咕咕 const int N=505; int a[N],n,res; int main(){ scanf("%d",&n); fp(i,1,n< ...

  5. Atcoder Grand Contest 001 D - Arrays and Palindrome(构造)

    Atcoder 题面传送门 洛谷题面传送门 又是道思维题,又是道把我搞自闭的题. 首先考虑对于固定的 \(a_1,a_2,\dots,a_n;b_1,b_2,\dots,b_m\) 怎样判定是否合法, ...

  6. JZOJ5405 & AtCoder Grand Contest 001 F. Permutation

    题目大意 给出一个长度为\(n\)的排列\(P\)与一个正整数\(k\). 你需要进行如下操作任意次, 使得排列\(P\)的字典序尽量小. 对于两个满足\(|i-j|>=k\) 且\(|P_i- ...

  7. AtCoder Grand Contest 001

    B - Mysterious Light 题意:从一个正三角形边上一点出发,遇到边和已走过的边则反弹,问最终路径长度 思路:GCD 数据爆long long #pragma comment(linke ...

  8. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  9. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

随机推荐

  1. oracle的全文索引

    1.查看oracle的字符集 SQL> select userenv('language') from dual; USERENV('LANGUAGE') ------------------- ...

  2. TDD三个阶段

    TDD的三个阶段 红灯.绿灯.重构 :明确了实施TDD所要遵循的工作流 (需求--->测试-->代码[重构]) 红灯阶段:      为不存在的代码编写测试 绿灯阶段:      仅编写适 ...

  3. js的数据处理记录

    mongoDB的mapReduce返回的数据有可能会非常之多,所以单独拎出来先在浏览器里面玩一玩; // 数据源 var arr = [ {"address": "四川汶 ...

  4. JavaScript 节点操作Dom属性和方法(转)

    JavaScript 节点操作Dom属性和方法   一些常用的dom属性和方法,列出来作为手册用. 属性:   1.Attributes 存储节点的属性列表(只读)   2.childNodes 存储 ...

  5. PHP Warning: date(): It is not safe to rely on the system's timezone settings.

    OSSEC安装结束后运行,运行以下命令却抛错 cat /opt/ossec/logs/alerts/alerts.log 具体抛错内容: ** Alert 1468897672.2164786: ma ...

  6. JCIFS读取远程服务器文件过慢的解决方法

    JCIFS读取远程服务器文件过慢的解决方法 发表于3年前(2013-07-12 11:23)   阅读(1174) | 评论(0) // 我要收藏"; var favor_del = &qu ...

  7. EINTR错误

    慢系统调用(slow system call):此术语适用于那些可能永远阻塞的系统调用.永远阻塞的系统调用是指调用有可能永远无法返回,多数网络支持函数都属于这一类.如:若没有客户连接到服务器上,那么服 ...

  8. 写出完美论文的十个技巧10 Tips for Writing the Perfect Paper

    10 Tips for Writing the Perfect Paper Like a gourmet meal or an old master painting, the perfect col ...

  9. oracle .bash_profile

    [oracle@redhat4 ~]$ vi .bash_profile # .bash_profile # Get the aliases and functionsif [ -f ~/.bashr ...

  10. UWP:本地应用数据

    获取应用的设置和文件容器 使用 ApplicationData.LocalSettings 属性可以获取 ApplicationDataContainer 对象中的设置. 注意:每个设置的名称最长可为 ...