【模式识别】Boosting
Boosting简单介绍
分类中通常使用将多个弱分类器组合成强分类器进行分类的方法,统称为集成分类方法(Ensemble Method)。比較简单的如在Boosting之前出现Bagging的方法,首先从从总体样本集合中抽样採取不同的训练集训练弱分类器,然后使用多个弱分类器进行voting,终于的结果是分类器投票的优胜结果。这样的简单的voting策略通常难以有非常好的效果。直到后来的Boosting方法问世,组合弱分类器的威力才被发挥出来。Boosting意为加强、提升,也就是说将弱分类器提升为强分类器。而我们常听到的AdaBoost是Boosting发展到后来最为代表性的一类。所谓AdaBoost,即Adaptive Boosting,是指弱分类器依据学习的结果反馈Adaptively调整如果的错误率,所以也不须要不论什么的先验知识就能够自主训练。Breiman在他的论文里赞扬AdaBoost是最好的off-the-shelf方法。
两类Discrete AdaBoos算法流程
AdaBoosting方法大致有:Discrete Adaboost, Real AdaBoost, LogitBoost, 和Gentle AdaBoost。全部的方法训练的框架的都是类似的。以Discrete Adaboost为例,其训练流程例如以下:
首先初始化每一个样本同样的权重(步骤2);之后使用加权的样本训练每一个弱分类器 (步骤3.1);分类后得到加权的训练错误率和比例因子 (步骤3.2);将被错误分类的样本的权重加大,并将改动后的权重再次归一化(步骤3.3);循环训练过程,终于使用比例因子 组合组合弱分类器构成终于的强分类器。
以下看一个更形象的图,多个弱分类器的组合过程和结果大致为:
训练的循环过程,加重被错误分类的样本的权重是一种有效的加速训练的方法。因为训练中正确率高的弱分类器权重较大,新一轮的训练中正确分类的样本会越来越多,权重较小的训练样本对在新一轮的训练中起作用较小,也就是,每一轮新的训练都着重训练被错误分类的样本。
实际训练中弱分类器是一样的,但弱分类器实际使用的训练数据不同,通常使用特征向量的每一维分别构成一个弱分类器。而后来大名鼎鼎的Haar+Adaboost人脸检測方法是使用每种Haar特征构成一个弱分类器,基于Block的Haar特征比简单的基于pixel的特征有带有很多其它的信息,通常能得到更好的检測效果,而积分图Integral的方法使其在计算速度上也有非常大优势。有兴趣可參考《基于Adaboost和Haar-like特征人脸识别》。
Real AdaBoost和Gentle AdaBoost
(转载请注明作者和出处:http://blog.csdn.net/xiaowei_cqu 未经同意请勿用于商业用途)
【模式识别】Boosting的更多相关文章
- 模式识别与机器学习—bagging与boosting
声明:本文用到的代码均来自于PRTools(http://www.prtools.org)模式识别工具箱,并以matlab软件进行实验. (1)在介绍Bagging和Boosting算法之前,首先要简 ...
- 深度学习 vs 机器学习 vs 模式识别
http://www.csdn.net/article/2015-03-24/2824301 [编者按]本文来自CMU的博士,MIT的博士后,vision.ai的联合创始人Tomasz Malisie ...
- 计算机视觉与模式识别代码合集第二版two
Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, ...
- 计算机视觉与模式识别代码合集第二版three
计算机视觉与模式识别代码合集第二版three Topic Name Reference code Optical Flow Horn and Schunck's Optical Flow ...
- boosting、adaboost
1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获 ...
- [Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模 ...
- paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接
牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结
Atitit 图像处理--图像分类 模式识别 肤色检测识别原理 与attilax的实践总结 1.1. 五中滤镜的分别效果..1 1.2. 基于肤色的图片分类1 1.3. 性能提升2 1.4. --co ...
随机推荐
- 在 Azure 网站上使用 Memcached 改进 WordPress
编辑人员注释:本文章由 Windows Azure 网站团队的项目经理 Sunitha Muthukrishna 和 Windows Azure 网站开发人员体验合作伙伴共同撰写. 您是否希望改善在 ...
- Hdu 5050 Divided Land
题目要求就是做求两个二进制数的gcd,如果是用java的话,这题很简单.但也可以用C++做,只能先给自己留下这个坑了,还在研究c++的做法. import java.math.BigInteger; ...
- android: 长按删除listview的item
转自:http://www.cnblogs.com/nuistlr/archive/2012/09/07/2675649.html 首先要继承OnItemLongClickListener publi ...
- Python 内置函数 range的使用
内置range函数可以用来方便的产生等差的数值序列.如: >>> range(5) [0, 1, 2, 3, 4] >>> range(1,5) [1, 2, 3, ...
- Cannot drop the database ‘XXX’ because it is being used for replication.
删除订阅数据库的时候出现下面的错误: Cannot drop the database ‘XXX’ because it is being used for replication. 数据库的状态为 ...
- hdu-4302-Holedox Eating-线段树-单点更新,有策略的单点查询
一開始实在是不知道怎么做,后来经过指导,猛然发现,仅仅须要记录某个区间内是否有值就可以. flag[i]:代表i区间内,共同拥有的蛋糕数量. 放置蛋糕的时候非常好操作,单点更新. ip:老鼠当前的位置 ...
- const关键字详解
const在函数前与函数后的区别 一 const基础 如果const关键字不涉及到指针,我们很好理解,下面是涉及到指针的情况: int b = 500; ...
- surfaceView画图
1.视图 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:too ...
- scanf()常犯错误
------------------------------------------------------------------------ <> 本意:接收字符串. 写成代码:voi ...
- Qt国际化(Q_DECLARE_TR_FUNCTIONS() 宏给非Qt类添加翻译支持,以前没见过QTextEncoder和QTextDecoder和QLibraryInfo::location()和QEvent::LanguageChange)
Internationalization with Qt 应用程序的国际化就是使得程序能在国际间可用而不仅仅是在本国可用的过程. Relevant Qt Classes andAPIs 以下的类支持Q ...