BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )
单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab)
(话说还是deque2048ms快..list3572ms慢死了)
#include<bits/stdc++.h> using namespace std; const int maxn = 1009; int X[maxn][maxn], R, C, N;
int MN[maxn][maxn], MX[maxn][maxn];
deque<int> MIN, MAX; int main() { cin >> R >> C >> N;
for(int i = 0; i < R; i++)
for(int j = 0; j < C; j++)
scanf("%d", &X[i][j]); for(int i = 0; i < R; i++) {
MIN.clear(); MAX.clear();
for(int j = 0; j < C; j++) {
while(!MIN.empty() && MIN.front() + N <= j) MIN.pop_front();
while(!MAX.empty() && MAX.front() + N <= j) MAX.pop_front();
while(!MIN.empty() && X[i][MIN.back()] >= X[i][j]) MIN.pop_back();
while(!MAX.empty() && X[i][MAX.back()] <= X[i][j]) MAX.pop_back();
MIN.push_back(j);
MAX.push_back(j);
if(j + 1 >= N) {
MN[i][j - N + 1] = X[i][MIN.front()];
MX[i][j - N + 1] = X[i][MAX.front()];
}
}
} int ans = 2000000000;
for(int j = 0; j + N <= C; j++) {
MIN.clear(); MAX.clear();
for(int i = 0; i < R; i++) {
while(!MIN.empty() && MIN.front() + N <= i) MIN.pop_front();
while(!MAX.empty() && MAX.front() + N <= i) MAX.pop_front();
while(!MIN.empty() && MN[MIN.back()][j] >= MN[i][j]) MIN.pop_back();
while(!MAX.empty() && MX[MAX.back()][j] <= MX[i][j]) MAX.pop_back();
MIN.push_back(i);
MAX.push_back(i);
if(i + 1 >= N)
ans = min(ans, MX[MAX.front()][j] - MN[MIN.front()][j]);
}
}
printf("%d\n", ans); return 0;
}
1047: [HAOI2007]理想的正方形
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2058 Solved: 1093
[Submit][Status][Discuss]
Description
有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
Input
第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。
Output
仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。
Sample Input
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
Sample Output
HINT
问题规模
(1)矩阵中的所有数都不超过1,000,000,000
(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10
(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100
Source
BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )的更多相关文章
- bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp
题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2369 Solved: 1266[Submi ...
- BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞
题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...
- BZOJ1047: [HAOI2007]理想的正方形 [单调队列]
1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2857 Solved: 1560[Submit][St ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】
题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...
- bzoj 1047: [HAOI2007]理想的正方形【单调队列】
没有复杂结构甚至不长但是写起来就很想死的代码类型 原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值 然后 ...
- BZOJ 1047: [HAOI2007]理想的正方形
题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...
- Luogu 2216[HAOI2007]理想的正方形 - 单调队列
Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...
- [HAOI2007] 理想的正方形 (单调队列)
题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...
随机推荐
- C++类成员常量
由于#define 定义的宏常量是全局的,不能达到目的,于是想当然地觉得应该用const 修饰数据成员来实现.const 数据成员的确是存在的,但其含义却不是我们所期望的.const 数据成员只在某个 ...
- Node.cluster
nodejs是一个单进程单线程的引擎,只能利用到单个cpu进行计算,面对当今服务器性能的提高,cpu的利用率显然对node应有的性能大打折扣,面对这个问题,cluster应运而生. cluster介绍 ...
- C - N皇后问题(搜索)
Description 在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上. 你的任务是,对于给定的N,求出有多少种合 ...
- HDU 1465 不容易系列之排错
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 大家常常感 ...
- VMware: linux起步提示 memory for crashkernel(0*0 to 0*0)not within permissible
(virtualbox/VMware)linux起步提示memoryforcrashkernel(0*0 to 0*0)notwithinpermissible http://www.myexcep ...
- VC++实现生成右键菜单及添加图标
用VC++实现弹出菜单比较简单,这里介绍其中的一种来实现一个鼠标右键弹出菜单,效果如下图所示: 步骤: 一.新建一个基于对话框的MFC应用程序-----PopMenu 二.添加一个菜单资源------ ...
- linux下出现java.net.UnknownHostException
项目部署在win环境下没问题,但是在迁移生产环境的时候出现Java.net.UnknowHostException 原因在于etc/hosts 文件没有配置域名映射,使用vi编辑器加上服务器ip 以及 ...
- Spring配置文件模板
模板: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://ww ...
- base64这种编码的意义
BASE64不是用来加密的.你看看经过BASE64编码后的字符串,全部都是由标准键盘上面的常规字符组成,这样编码后的字符串在网关之间传递不会产生UNICODE字符串不能识别或者丢失的现象.你再仔细研究 ...
- cyq.data开源
终于等到你:CYQ.Data V5系列 (ORM数据层)最新版本开源了 前言: 不要问我框架为什么从收费授权转到免费开源,人生没有那么多为什么,这些年我开源的东西并不少,虽然这个是最核心的,看淡了就也 ...