Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 

题意:给出n个长方体的三边,求叠罗汉能叠的最高高度,要求上面长方体的底面积要小于下面的,每个长方体可以无限取

思路:用大了贪心的思想,由于n只有30,而且三边位置可以变化,可以将所有情况全部存起来再拍一次序,然后再将所有状况进行一次循环找出最大值

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; struct node
{
int x,y,z;
} dp[35*3]; int hei[35*3]; int cmp(node a,node b)
{
if(a.x!=b.x)
return a.x<b.x;
if(a.y!=b.y)
return a.y<b.y;
a.z<b.z;
} int main()
{
int n,a,b,c,i,j,maxn,ans,cas = 1;
while(~scanf("%d",&n),n)
{
for(i = 0; i<n; i++)
{
scanf("%d%d%d",&a,&b,&c);
dp[i*3+0].x = a>b?a:b;
dp[i*3+0].y = a>b?b:a;
dp[i*3+0].z = c;
dp[i*3+1].x = b>c?b:c;
dp[i*3+1].y = b>c?c:b;
dp[i*3+1].z = a;
dp[i*3+2].x = a>c?a:c;
dp[i*3+2].y = a>c?c:a;
dp[i*3+2].z = b;
}
sort(dp,dp+3*n,cmp);
hei[0] = ans = dp[0].z;
for(i = 1; i<n*3; i++)
{
maxn = 0;
for(j = 0; j<i; j++)
{
if(dp[j].x<dp[i].x && dp[j].y<dp[i].y && hei[j]>maxn)
maxn = hei[j];
hei[i] = maxn+dp[i].z;
if(hei[i]>ans)
ans = hei[i]; }
}
printf("Case %d: maximum height = %d\n",cas++,ans);
} return 0;
}

HDU1069:Monkey and Banana(DP+贪心)的更多相关文章

  1. kuangbin专题十二 HDU1069 Monkey and Banana (dp)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU1069 Monkey and Banana —— DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS ...

  3. HDU1069 Monkey and Banana

    HDU1069 Monkey and Banana 题目大意 给定 n 种盒子, 每种盒子无限多个, 需要叠起来, 在上面的盒子的长和宽必须严格小于下面盒子的长和宽, 求最高的高度. 思路 对于每个方 ...

  4. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  6. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  7. HDU1069 - Monkey and Banana【dp】

    题目大意 给定箱子种类数量n,及对应长宽高,每个箱子数量无限,求其能叠起来的最大高度是多少(上面箱子的长宽严格小于下面箱子) 思路 首先由于每种箱子有无穷个,而不仅可以横着放,还可以竖着放,歪着放.. ...

  8. HDU1069 Monkey and Banana(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 题意:给定n种类型的长方体,每个类型长方体无数个,要求长方体叠放在一起,且上面的长方体接触面积要小于 ...

  9. HDU-1069 Monkey and Banana DAG上的动态规划

    题目链接:https://cn.vjudge.net/problem/HDU-1069 题意 给出n种箱子的长宽高 现要搭出最高的箱子塔,使每个箱子的长宽严格小于底下的箱子的长宽,每种箱子数量不限 问 ...

随机推荐

  1. 走进C标准库(8)——"string.h"中函数的实现相关字符串操作函数

    我的strcat: char *strcat(char *dest,char *src) { char * reval = dest; while(*dest) dest++; while(*src) ...

  2. SQL Server 一些重要视图3

    1. sys.dm_tran_locks; 为每一把锁返回一行.request_session_id 可以与sys.dm_tran_session_transactions \sys.dm_exec_ ...

  3. poj2823_单调队列简单入门

    题目链接:http://poj.org/problem?id=2823 #include<iostream> #include<cstdio> #define M 100000 ...

  4. 写个脚本列出neutron的ovs的topology。

    运行结果如下: $ ./nova-ifinfo  a7026868-407c-4c54-bb8f-a68623d7e13fvm name is: instance-00000035    # 查找VM ...

  5. oracle sql命令行中上下左右使用

    yum -y install readline,rlwrap

  6. 请问下mtk双卡手机怎样发短信是怎样选择sim卡来发(双卡都可用的情况下)?

    如题,我如今可以获取双卡状态,当仅仅有单一卡的时候可以指定sim卡进行发短信,可是双卡都可用的情况下,程序就默认使用卡1发短信了.即使指定了sim卡编号.

  7. iOS 更改导航栏返回button文字

    假如有两个ViewController A,B 改动B的返回button需在A页面设置 self.navigationItem.backBarButtonItem = [[UIBarButtonIte ...

  8. strtus2.3 java.lang.NoSuchFieldException: DEFAULT_PARAM>

    strtus2.3.15.1 的bug请下载 http://download.csdn.net/detail/livalue/6229373 或加群到群共享中下载.214579879

  9. [置顶] Guava学习之Splitter

    Splitter:在Guava官方的解释为:Extracts non-overlapping substrings from an input string, typically by recogni ...

  10. CodeForces Round #179 (295A) - Greg and Array 一个线段树做两次用

    线段树的区间更新与区间求和...一颗这样的线段树用两次... 先扫描1~k...用线段树统计出每个操作执行的次数... 那么每个操作就变成了 op. l  , op.r , op.c= times* ...