Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.

They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.

 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 

题意:给出n个长方体的三边,求叠罗汉能叠的最高高度,要求上面长方体的底面积要小于下面的,每个长方体可以无限取

思路:用大了贪心的思想,由于n只有30,而且三边位置可以变化,可以将所有情况全部存起来再拍一次序,然后再将所有状况进行一次循环找出最大值

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; struct node
{
int x,y,z;
} dp[35*3]; int hei[35*3]; int cmp(node a,node b)
{
if(a.x!=b.x)
return a.x<b.x;
if(a.y!=b.y)
return a.y<b.y;
a.z<b.z;
} int main()
{
int n,a,b,c,i,j,maxn,ans,cas = 1;
while(~scanf("%d",&n),n)
{
for(i = 0; i<n; i++)
{
scanf("%d%d%d",&a,&b,&c);
dp[i*3+0].x = a>b?a:b;
dp[i*3+0].y = a>b?b:a;
dp[i*3+0].z = c;
dp[i*3+1].x = b>c?b:c;
dp[i*3+1].y = b>c?c:b;
dp[i*3+1].z = a;
dp[i*3+2].x = a>c?a:c;
dp[i*3+2].y = a>c?c:a;
dp[i*3+2].z = b;
}
sort(dp,dp+3*n,cmp);
hei[0] = ans = dp[0].z;
for(i = 1; i<n*3; i++)
{
maxn = 0;
for(j = 0; j<i; j++)
{
if(dp[j].x<dp[i].x && dp[j].y<dp[i].y && hei[j]>maxn)
maxn = hei[j];
hei[i] = maxn+dp[i].z;
if(hei[i]>ans)
ans = hei[i]; }
}
printf("Case %d: maximum height = %d\n",cas++,ans);
} return 0;
}

HDU1069:Monkey and Banana(DP+贪心)的更多相关文章

  1. kuangbin专题十二 HDU1069 Monkey and Banana (dp)

    Monkey and Banana Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU1069 Monkey and Banana —— DP

    题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS ...

  3. HDU1069 Monkey and Banana

    HDU1069 Monkey and Banana 题目大意 给定 n 种盒子, 每种盒子无限多个, 需要叠起来, 在上面的盒子的长和宽必须严格小于下面盒子的长和宽, 求最高的高度. 思路 对于每个方 ...

  4. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. HDU 1069 Monkey and Banana(DP 长方体堆放问题)

    Monkey and Banana Problem Description A group of researchers are designing an experiment to test the ...

  6. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  7. HDU1069 - Monkey and Banana【dp】

    题目大意 给定箱子种类数量n,及对应长宽高,每个箱子数量无限,求其能叠起来的最大高度是多少(上面箱子的长宽严格小于下面箱子) 思路 首先由于每种箱子有无穷个,而不仅可以横着放,还可以竖着放,歪着放.. ...

  8. HDU1069 Monkey and Banana(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 题意:给定n种类型的长方体,每个类型长方体无数个,要求长方体叠放在一起,且上面的长方体接触面积要小于 ...

  9. HDU-1069 Monkey and Banana DAG上的动态规划

    题目链接:https://cn.vjudge.net/problem/HDU-1069 题意 给出n种箱子的长宽高 现要搭出最高的箱子塔,使每个箱子的长宽严格小于底下的箱子的长宽,每种箱子数量不限 问 ...

随机推荐

  1. css书写顺序和常用命名推荐

    写代码的时候有一个好的规范和顺序能够帮你节省很多时间.下文将推荐相关CSS书写顺序和规范的一些方法.这个文档将会整理进前端规范文档中,如果你有更好的意见,不妨留言告知我们. CSS书写顺序 该代码来自 ...

  2. php实现两分法查找

    两分法查找的前提:顺序方式存储,而且必须是排好序 直接上代码: function search($array, $target, $low = 0, $high = 0){ $len = count( ...

  3. Cortex-M3 动态加载一(地址无关代码实现)

    这篇文章是自己疑惑究竟地址无关性是如何实现,然后查看汇编和CPU指令手册,最后分析解除自己疑惑的,高手不要鄙视,哈哈. 编译C代码时候需要制定--acps/ropi选项,如下例子: void Syst ...

  4. 影响世界的IT

    MIT BBS上说微软电话面试的一道题就是"Who do you think is the best coder,and why?”.我觉得挺有意思的,也来凑个热闹.排名不分先后. 1.Bi ...

  5. Oracle EBS-SQL (SYS-3):sys_人员用户名对应关系查询.sql

    select fu.user_name 用户名,       fu.description 描述,       (select ppf.FULL_NAME          from per_peop ...

  6. Tempo 2.0

    Tempo 2.0 Tempo is an easy, intuitive JavaScript rendering engine that enables you to craft data tem ...

  7. 在 Windows Azure 虚拟机中如何备份和还原 Windows 系统磁盘

    备份和还原对于操作真实的系统来说至关重要.对于 Windows Azure 虚拟机环境中的 Windows Server,可以根据自身的需求选择多种不同的工具或将这些工具结合使用来实现备份.下面将对这 ...

  8. js笔记-DOM基础

    DoM 浏览器支持: IE: 10% FF: 99% Chrome: 60% childNotes不兼容 在Chrome和IE9中会将文本节点也算作childNotes,而在IE6-8中childNo ...

  9. mac电脑批量解压android apk文件图形化工具--apkDecode

    mac电脑apk文件解压软件,简单的用图形界面将apktools包装了下,使用起来非常简单,可以将apk文件批量解压缩,方便大家查看一些东东,仅供学习目的. 使用步骤如下: 1 下载apkDecode ...

  10. CSS蒙版

    蒙版:就是在图片上添加一个图层,用于美化页面,增加页面的可读性 <!DOCTYPE html><html><head lang="en"> &l ...