Problem Description
Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
In the field of Cyberground, the position of each toy is fixed, and
the ring is carefully designed so it can only encircle one toy at a time. On the
other hand, to make the game look more attractive, the ring is designed to have
the largest radius. Given a configuration of the field, you are supposed to find
the radius of such a ring.

Assume that all the toys are points on a
plane. A point is encircled by the ring if the distance between the point and
the center of the ring is strictly less than the radius of the ring. If two toys
are placed at the same point, the radius of the ring is considered to be
0.

 
Input
The input consists of several test cases. For each
case, the first line contains an integer N (2 <= N <= 100,000), the total
number of toys in the field. Then N lines follow, each contains a pair of (x, y)
which are the coordinates of a toy. The input is terminated by N = 0.
 
Output
For each test case, print in one line the radius of the
ring required by the Cyberground manager, accurate up to 2 decimal places.
 
Sample Input
2
0 0
1 1
2
1 1
1 1
3
-1.5  0
0 0
1.5
0
0
 
Sample Output
0.71
0.00
0.75
 #include<stdio.h>/*此题坐标按照y升序排列,然后进行计算比较*/
#include<math.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
typedef struct
{
double x,y;
}node;
node a[];
int cmp(node p,node q)/*对结构体排序*/
{
return p.y<q.y;
}
int main()
{
int T;
while(scanf("%d",&T)==)
{
if(!T)
break;
else
{
int i,j;
double min1=99999999.0,min;
double d;
for(i=;i<T;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a,a+T,cmp);
for(i=;i<T-;i++)
{
d=pow(a[i+].x-a[i].x,)+pow(a[i+].y-a[i].y,);
min1=d<min1?d:min1;
}
printf("%.2lf\n",sqrt(min1)/);/*最后在开方,节省时间*/
}
}
}
#include<stdio.h>/*我先按照x升序排列,求最小距离,在按照y升序排列求最小,然后比较,结果还WA了,果断怀疑这题数据给的有问题,讨论组也这么喷!*/
#include<math.h>
#include<stdlib.h>
#include<algorithm>
using namespace std;
typedef struct
{
double x,y;
}node;
node a[];
int cmp1(node p,node q)
{
return p.x<q.x;
}
int cmp2(node p,node q)
{
return p.y<q.y;
}
int main()
{
int T;
while(scanf("%d",&T)==)
{
if(!T)
break;
else
{
int i,j;
double min1=99999999.0,min2=99999999.0,min;
double d;
for(i=;i<T;i++)
scanf("%lf%lf",&a[i].x,&a[i].y);
sort(a,a+T,cmp1);
for(i=;i<T-;i++)
{
d=pow(a[i+].x-a[i].x,)+pow(a[i+].y-a[i].y,);
min1=d<min1?d:min1;
}
sort(a,a+T,cmp2);
for(i=;i<T-;i++)
{
d=pow(a[i+].x-a[i].x,)+pow(a[i+].y-a[i].y,);
min2=d<min2?d:min2;
}
min=sqrt(min1>min2?min2:min1)/;
printf("%.2lf\n",min);
}
}
}

quoit design(hdoj p1007)的更多相关文章

  1. HDU 1007 Quoit Design(二分+浮点数精度控制)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  2. HDU1007 Quoit Design 【分治】

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. 杭电OJ——1007 Quoit Design(最近点对问题)

    Quoit Design Problem Description Have you ever played quoit in a playground? Quoit is a game in whic ...

  4. ACM-计算几何之Quoit Design——hdu1007 zoj2107

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  5. (hdu 7.1.8)Quoit Design(最低点——在n一个点,发现两点之间的最小距离)

    主题: Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...

  6. Quoit Design(最近点对+分治)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1007 Quoit Design Time Limit: 10000/5000 MS (Java/Oth ...

  7. Quoit Design(hdu1007)最近点对问题。模版哦!

    Quoit Design Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. ZOJ 2017 Quoit Design 经典分治!!! 最近点对问题

    Quoit Design Time Limit: 5 Seconds      Memory Limit: 32768 KB Have you ever played quoit in a playg ...

  9. poj 1007 Quoit Design(分治)

    Quoit Design Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

随机推荐

  1. jquery向列表添加新元素

    $(function () { $('#btn').click(function () { $('ol').append('<li>'+$('#text').val()+'</li& ...

  2. Web数据采集

    http://blog.csdn.net/pqhdp/article/details/4352769 http://blog.csdn.net/CharlesSimonyi/article/detai ...

  3. C# 字符串驻留池

    在.Net中,对于相同的字符串,.Net会将它们指向同一个地址,它们是相同的实例..Net中的字符串并不会更新,当更改一个字符串变量时,由于字符串的不可变性,.Net实际上是新创建一个字符串,而将变量 ...

  4. 序列化与反序列化 - BinaryFormatter二进制(.dat)、SoapFormatter(.soap)、XmlSerializer(.xml)

    序列化的作用是什么?为什么要序列化? 1.在进程下次启动时读取上次保存的对象的信息. 2.在不同的应用程序域或进程之间传递数据. 3.在分布式应用程序中的各应用程序之间传输对象. 所为序列化,就是将对 ...

  5. 点击Winform右下角图标,在最前端展示窗口

    //调用Windows API 展示窗口到最前端 SwitchToThisWindow(this.Handle, true);//窗体的句柄 this.Handle     SwitchToThisW ...

  6. 【Xamarin挖墙脚系列:开始使用Xamari4.0系列产品开发IOS】

    一直沉默在Xamarin3.0系列版本上,升级到4.0之后,感觉有些变化.还得适应下. 1 build.host  代理消失了,成了SSH客户端登录.所以,Mac设备需要打开运行远程登录. 2 在Wi ...

  7. 《how to design programs》第11章自然数

    这章让我明白了原来自然数的定义本来就是个递归的过程. 我们通常用枚举的方式引出自然数的定义:0,1,2,3,等等(etc).最后的等等是什么意思?唯一能把等等从描述自然数的枚举方法中去除的方法是自引用 ...

  8. Liferay门户网站portal

    转自:http://www.oschina.net/p/liferay+portal Liferay 是一个完整的门户解决方案,基于J2EE的应用,使用了EJB以及JMS等技术,前台界面部分使用Str ...

  9. windows多线程没那么难

    windows多线程没那么难 作者:vpoet mail:vpoet_sir@163.com 上一博文中我们引入了CreateThread()多线程编程一个简单的例子,事实上我说windows 多线程 ...

  10. openstack configure

    <一,nova.conf配置文件配置 hypervisors compute_driver = 值> 1,kvm/qemu Hypervisor OpenStack nova comput ...