hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2049 Accepted Submission(s): 746
Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题意:秦始皇修路要把所有的城市都连通,每个城市有相应的人口数,每条路有相应的修路费。
现在可以选一条magic路,修路费变为0,以A代表magic 路两端的人口数和。B代表总路费。
选一条路作为magic路,使A/B最大。
分析:不能用贪心,因为A与B相互制约。
要使A/B最大,那么B应该最小。故先求出n个点的最小生成树。再枚举
每一条边,假设最小生成树的值是B, 而枚举的那条边长度是edge[i][j], 如果这一条边已经
是属于最小生成树上的,那么最终式子的值是A/(B-edge[i][j])。如果这一条不属于最小生成
树上的, 那么添加上这条边,就会有n条边,那么就会使得有了一个环,为了使得它还是一
个生成树,就要删掉环上的一条边。 为了让生成树尽量少,那么就要删掉除了加入的那条边
以外,权值最大的那条路径。 假设删除的那个边的权值是Max[i][j], 那么就是A/(B-Max[i][j]).
即:如果把这条边当作magic road的话,那么这条边以及连接u v 的mst的边就组成了一个环了
当前这条边的权值是最大的,要使剩下的路的花费最小,那么肯定要把u v间的最长的一条边给删
去就行了,也就是找环中的第二大边了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std; struct node
{
double x,y;
double peo;
}city[1010];
int vis[1010],mark[1010][1010],pre[1010];
double maps[1010][1010],dis[1010],maxedge[1010][1010];
int n;
double sum,ans; double cal(int i,int j)
{
double xx=(city[i].x-city[j].x)*(city[i].x-city[j].x);
double yy=(city[i].y-city[j].y)*(city[i].y-city[j].y);
return sqrt(xx+yy);
}
void prim()
{
int i,j,v;
double minc;
sum=0;
memset(maxedge,0,sizeof(maxedge));
memset(pre,0,sizeof(pre));
//dis[1]=INF;
for(i=2;i<=n;i++)
{
dis[i]=maps[1][i];
pre[i]=1;
}
vis[1]=1;
for(i=1;i<n;i++)
{
minc=INF;
v=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && dis[j]<minc)
{
minc=dis[j];
v=j;
}
}
sum+=minc;
mark[pre[v]][v]=mark[v][pre[v]]=1;
vis[v]=1;
for(j=1;j<=n;j++)
{
if(vis[j] && j!=v)
{
maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
}
if(!vis[j] && maps[v][j]<dis[j])
{
dis[j]=maps[v][j];
pre[j]=v;
}
}
}
}
int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
memset(mark,0,sizeof(mark));
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(city,0,sizeof(city));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&city[i].x,&city[i].y,&city[i].peo);
for(j=1;j<i;j++)
maps[i][j]=maps[j][i]=cal(i,j);
}
prim();
ans=-1;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(!mark[i][j])
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maxedge[i][j]));
else
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maps[i][j]));
}
}
printf("%.2lf\n",ans);
}
return 0;
}
感想:maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
这一句开始写成maxedge[j][v]=maxedge[v][j]=max(dis[v],maps[pre[v]][j]);
wa了好多好多次。。。。T_T....
hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
随机推荐
- C# 中根据datetime的值来计算属于本年的第几周,类似delphi中的weekoftheyear功能
/// <summary> /// 获得今天是今年的第几周 /// </summary> /// <param name="year">< ...
- BestCoder Round #50 (div.1) 1002 Run (HDU OJ 5365) 暴力枚举+正多边形判定
题目:Click here 题意:给你n个点,有多少个正多边形(3,4,5,6). 分析:整点是不能构成正五边形和正三边形和正六边形的,所以只需暴力枚举四个点判断是否是正四边形即可. #include ...
- 处理IIS报“由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面”
“由于 Web 服务器上的“ISAPI 和 CGI 限制”列表设置,无法提供您请求的页面” 详细错误:HTTP 错误 404.2 - Not Found. 由于 Web 服务器上的“ISAPI 和 C ...
- struts2--配置文件中使用通配符
struts2的配置文件是 struts.xml.. 在这个配置文件里面可以使用通配符..其中的好处就是,大大减少了配置文件的内容..当然,相应付出的代价是可读性.. 使用通配符的原则是 约定高于配置 ...
- U+00A0 (Non-breaking space)无法被正确压缩
Code Glyph Decimal HTML Description #U+00A0 Non-breaking space 0096 https://zh.wikipedia.org/wik ...
- 基于visual Studio2013解决C语言竞赛题之0423比赛安排
题目
- sharePoint常用命令
New-SPStateServiceDatabase -Name "StateServiceDatabase" | New-SPStateServiceApplication -N ...
- Mars的mp3实例
Mars的mp3实例第一课: 关于menu: package mars.mp3player01; import mars.down.HttpDownloader; import android.app ...
- opencv开源库
opencv是开源库 在Windows下编译扩展OpenCV 3.1.0 + opencv_contrib 为什么要CMake,这里我陈述自己的想法,作为一个刚使用opencv库的小白来说,有以下大概 ...
- SDK Hello world(直接使用SDK封装)
前言 将代码拆分了一下, 如果处理更多的消息也不怕看的眼花 SDK编程就是对各种Windows消息的处理 实验工程 /// @file exam_1.cpp /// @brief 查阅本地MSDN, ...