hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)
题目:Qin Shi Huang's National Road System
Qin Shi Huang's National Road System
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2049 Accepted Submission(s): 746
Qin Shi Huang undertook gigantic projects, including the first version of the Great Wall of China, the now famous city-sized mausoleum guarded by a life-sized Terracotta Army, and a massive national road system. There is a story about the road system:
There were n cities in China and Qin Shi Huang wanted them all be connected by n-1 roads, in order that he could go to every city from the capital city Xianyang.
Although Qin Shi Huang was a tyrant, he wanted the total length of all roads to be minimum,so that the road system may not cost too many people's life. A daoshi (some kind of monk) named Xu Fu told Qin Shi Huang that he could build a road by magic and that magic road would cost no money and no labor. But Xu Fu could only build ONE magic road for Qin Shi Huang. So Qin Shi Huang had to decide where to build the magic road. Qin Shi Huang wanted the total length of all none magic roads to be as small as possible, but Xu Fu wanted the magic road to benefit as many people as possible ---- So Qin Shi Huang decided that the value of A/B (the ratio of A to B) must be the maximum, which A is the total population of the two cites connected by the magic road, and B is the total length of none magic roads.
Would you help Qin Shi Huang?
A city can be considered as a point, and a road can be considered as a line segment connecting two points.
For each test case:
The first line is an integer n meaning that there are n cities(2 < n <= 1000).
Then n lines follow. Each line contains three integers X, Y and P ( 0 <= X, Y <= 1000, 0 < P < 100000). (X, Y) is the coordinate of a city and P is the population of that city.
It is guaranteed that each city has a distinct location.
4
1 1 20
1 2 30
200 2 80
200 1 100
3
1 1 20
1 2 30
2 2 40
70.00
题意:秦始皇修路要把所有的城市都连通,每个城市有相应的人口数,每条路有相应的修路费。
现在可以选一条magic路,修路费变为0,以A代表magic 路两端的人口数和。B代表总路费。
选一条路作为magic路,使A/B最大。
分析:不能用贪心,因为A与B相互制约。
要使A/B最大,那么B应该最小。故先求出n个点的最小生成树。再枚举
每一条边,假设最小生成树的值是B, 而枚举的那条边长度是edge[i][j], 如果这一条边已经
是属于最小生成树上的,那么最终式子的值是A/(B-edge[i][j])。如果这一条不属于最小生成
树上的, 那么添加上这条边,就会有n条边,那么就会使得有了一个环,为了使得它还是一
个生成树,就要删掉环上的一条边。 为了让生成树尽量少,那么就要删掉除了加入的那条边
以外,权值最大的那条路径。 假设删除的那个边的权值是Max[i][j], 那么就是A/(B-Max[i][j]).
即:如果把这条边当作magic road的话,那么这条边以及连接u v 的mst的边就组成了一个环了
当前这条边的权值是最大的,要使剩下的路的花费最小,那么肯定要把u v间的最长的一条边给删
去就行了,也就是找环中的第二大边了。
代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std; struct node
{
double x,y;
double peo;
}city[1010];
int vis[1010],mark[1010][1010],pre[1010];
double maps[1010][1010],dis[1010],maxedge[1010][1010];
int n;
double sum,ans; double cal(int i,int j)
{
double xx=(city[i].x-city[j].x)*(city[i].x-city[j].x);
double yy=(city[i].y-city[j].y)*(city[i].y-city[j].y);
return sqrt(xx+yy);
}
void prim()
{
int i,j,v;
double minc;
sum=0;
memset(maxedge,0,sizeof(maxedge));
memset(pre,0,sizeof(pre));
//dis[1]=INF;
for(i=2;i<=n;i++)
{
dis[i]=maps[1][i];
pre[i]=1;
}
vis[1]=1;
for(i=1;i<n;i++)
{
minc=INF;
v=1;
for(j=1;j<=n;j++)
{
if(!vis[j] && dis[j]<minc)
{
minc=dis[j];
v=j;
}
}
sum+=minc;
mark[pre[v]][v]=mark[v][pre[v]]=1;
vis[v]=1;
for(j=1;j<=n;j++)
{
if(vis[j] && j!=v)
{
maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
}
if(!vis[j] && maps[v][j]<dis[j])
{
dis[j]=maps[v][j];
pre[j]=v;
}
}
}
}
int main()
{
int T,i,j;
scanf("%d",&T);
while(T--)
{
memset(mark,0,sizeof(mark));
memset(vis,0,sizeof(vis));
memset(dis,0,sizeof(dis));
memset(city,0,sizeof(city));
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%lf%lf%lf",&city[i].x,&city[i].y,&city[i].peo);
for(j=1;j<i;j++)
maps[i][j]=maps[j][i]=cal(i,j);
}
prim();
ans=-1;
for(i=1;i<=n;i++)
{
for(j=i+1;j<=n;j++)
{
if(!mark[i][j])
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maxedge[i][j]));
else
ans=max(ans,(city[i].peo+city[j].peo)/(sum-maps[i][j]));
}
}
printf("%.2lf\n",ans);
}
return 0;
}
感想:maxedge[j][v]=maxedge[v][j]=max(dis[v],maxedge[pre[v]][j]);
这一句开始写成maxedge[j][v]=maxedge[v][j]=max(dis[v],maps[pre[v]][j]);
wa了好多好多次。。。。T_T....
hdu 4081 Qin Shi Huang's National Road System (次小生成树的变形)的更多相关文章
- HDU 4081 Qin Shi Huang's National Road System 次小生成树变种
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081 Qin Shi Huang's National Road System [次小生成树]
题意: 秦始皇要建路,一共有n个城市,建n-1条路连接. 给了n个城市的坐标和每个城市的人数. 然后建n-2条正常路和n-1条魔法路,最后求A/B的最大值. A代表所建的魔法路的连接的城市的市民的人数 ...
- HDU 4081 Qin Shi Huang's National Road System 最小生成树+倍增求LCA
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 Qin Shi Huang's National Road System Time Limit: ...
- hdu 4081 Qin Shi Huang's National Road System (次小生成树)
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU 4081—— Qin Shi Huang's National Road System——————【次小生成树、prim】
Qin Shi Huang's National Road System Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/3 ...
- HDU4081 Qin Shi Huang's National Road System —— 次小生成树变形
题目链接:https://vjudge.net/problem/HDU-4081 Qin Shi Huang's National Road System Time Limit: 2000/1000 ...
- hdu 4081 Qin Shi Huang's National Road System 树的基本性质 or 次小生成树思想 难度:1
During the Warring States Period of ancient China(476 BC to 221 BC), there were seven kingdoms in Ch ...
- hdu 4081 Qin Shi Huang's National Road System(次小生成树prim)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意:有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点. ...
- HDU - 4081 Qin Shi Huang's National Road System 【次小生成树】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4081 题意 给出n个城市的坐标 以及 每个城市里面有多少人 秦始皇想造路 让每个城市都连通 (直接或者 ...
随机推荐
- vim下设置tab
前言:大多数情况下tab键的宽度设置为4个空格,这个可以根据自己 的代码风格进行替换,然而当你提交不同的语言的代码的时候python 和c的时候就有区别了.c的话一般tab键做缩进,而python提交 ...
- ubuntu安装greenplum依赖包
ubuntu安装greenplum的过程中有两个比较难找的包,特地写出来给大家分享一下: 错误提示1:configure: error: header file <ldap.h> is r ...
- php language construct 语言构造器
isset和empty看起来像是函数,我们也经常把它当作函数一样使用,但是实际上,它们是语言构造器. php中的语言构造器就相当于C中的预定义宏的意思,它属于php语言内部定义的关键词,不可以被修改, ...
- 进入MFC讲坛的前言(五)
框窗.视图和文档及其关系 MFC架构的另外一个特色是它的框窗.视图和文档这个三位一体的结构,它是一个典型的MVC(Model.View and Controler)结构.严格的讲,框窗不属于MVC中的 ...
- 腾讯QQ:异地登陆也被封号,你们是怎么决策的???
此文我想放到首页,让很多其它的人看到,更期待有人能解释一下.希望管理员给开绿灯. 今天真是费解,我的手机号是青岛的.可是我在武汉工作,因为是3G的卡,全国没有漫游,打电话也没多少钱,所以就没换号. 谁 ...
- linux 单网卡绑定两个ip
一.ubuntu系统: #vi /etc/network/interfaces OR $ sudo vi /etc/network/interfaces Modify as follows: au ...
- SQL 局域网远程备份
局域网远程备份,还真有点问题 我用的是2003,发现sql和windows兼容不太好 . 如果我在windows下面映射远程目录,sql发现不了,找不到路径,备份不了,在sql下映射远程目录,win ...
- 变相的取消Datagridview控件的选中状态
思路:把每一列的文字颜色设为黑色,选中时候的背景为白色,颜色为黑色.每一列都这样设置,那么变相的达到了取消选中效果. 图:
- [转]PostgreSQL 中文资料汇总
原文链接:http://francs3.blog.163.com/blog/static/405767272014017341219/ --1 中文社区网站 PostgreSQL 中文社区官网: h ...
- Java I/O流-ObjectInputStream、ObjectOutputStream
一.整体代码 ObjectStreamDemo.java import java.io.File; import java.io.FileInputStream; import java.io.Fil ...