Mahout快速入门教程
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。
一、Mahout安装、配置
1、下载并解压Mahout
http://archive.apache.org/dist/mahout/
tar -zxvf mahout-distribution-0.9.tar.gz
2、配置环境变量
# set mahout environment
export MAHOUT_HOME=/mnt/jediael/mahout/mahout-distribution-0.9
export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf
export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH
3、安装mahout
[jediael@master mahout-distribution-0.9]$ pwd
/mnt/jediael/mahout/mahout-distribution-0.9
[jediael@master mahout-distribution-0.9]$ mvn install
4、验证Mahout是否安装成功
执行命令mahout。若列出一些算法,则成功:
[jediael@master mahout-distribution-0.9]$ mahout
Running on hadoop, using /mnt/jediael/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /mnt/jediael/mahout/mahout-distribution-0.9/examples/target/mahout-examples-0.9-job.jar
An example program must be given as the first argument.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
canopy: : Canopy clustering
cat: : Print a file or resource as the logistic regression models would see it
cleansvd: : Cleanup and verification of SVD output
clusterdump: : Dump cluster output to text
clusterpp: : Groups Clustering Output In Clusters
cmdump: : Dump confusion matrix in HTML or text formats
concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
fkmeans: : Fuzzy K-means clustering
hmmpredict: : Generate random sequence of observations by given HMM
itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
kmeans: : K-means clustering
lucene.vector: : Generate Vectors from a Lucene index
lucene2seq: : Generate Text SequenceFiles from a Lucene index
matrixdump: : Dump matrix in CSV format
matrixmult: : Take the product of two matrices
parallelALS: : ALS-WR factorization of a rating matrix
qualcluster: : Runs clustering experiments and summarizes results in a CSV
recommendfactorized: : Compute recommendations using the factorization of a rating matrix
recommenditembased: : Compute recommendations using item-based collaborative filtering
regexconverter: : Convert text files on a per line basis based on regular expressions
resplit: : Splits a set of SequenceFiles into a number of equal splits
rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
runlogistic: : Run a logistic regression model against CSV data
seq2encoded: : Encoded Sparse Vector generation from Text sequence files
seq2sparse: : Sparse Vector generation from Text sequence files
seqdirectory: : Generate sequence files (of Text) from a directory
seqdumper: : Generic Sequence File dumper
seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
seqwiki: : Wikipedia xml dump to sequence file
spectralkmeans: : Spectral k-means clustering
split: : Split Input data into test and train sets
splitDataset: : split a rating dataset into training and probe parts
ssvd: : Stochastic SVD
streamingkmeans: : Streaming k-means clustering
svd: : Lanczos Singular Value Decomposition
testnb: : Test the Vector-based Bayes classifier
trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
trainlogistic: : Train a logistic regression using stochastic gradient descent
trainnb: : Train the Vector-based Bayes classifier
transpose: : Take the transpose of a matrix
validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output states sequence
二、使用简单示例验证mahout
1、启动Hadoop
2、下载测试数据
http://archive.ics.uci.edu/ml/databases/synthetic_control/链接中的synthetic_control.data
或者百度一下也很容易找到这个示例数据。
3、上传测试数据
hadoop fs -put synthetic_control.data testdata
4、 使用Mahout中的kmeans聚类算法,执行命令:
mahout -core org.apache.mahout.clustering.syntheticcontrol.kmeans.Job
花费9分钟左右完成聚类 。
5、查看聚类结果
执行hadoop fs -ls /user/root/output,查看聚类结果。
[jediael@master mahout-distribution-0.9]$ hadoop fs -ls output
Found 15 items
-rw-r--r-- 2 jediael supergroup 194 2015-03-07 15:07 /user/jediael/output/_policy
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusteredPoints
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-0
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-1
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-10-final
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-2
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-3
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-4
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-5
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-6
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-7
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:06 /user/jediael/output/clusters-8
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-9
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/data
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/random-seeds
Mahout快速入门教程的更多相关文章
- Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏
Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...
- 专为设计师而写的GitHub快速入门教程
专为设计师而写的GitHub快速入门教程 来源: 伯乐在线 作者:Kevin Li 原文出处: Kevin Li 在互联网行业工作的想必都多多少少听说过GitHub的大名,除了是最大的开源项目 ...
- EntityFramework6 快速入门教程
EntityFramework6 快速入门教程 不得不说EF在国内实在是太小众,相关的技术文章真实屈指可数,而且很多文章都很旧了,里面使用的版本跟如今的EF6差别还是比较大.我刚开始弄这个的时候真是绕 ...
- Apple Watch开发快速入门教程
Apple Watch开发快速入门教程 试读下载地址:http://pan.baidu.com/s/1eQ8JdR0 介绍:苹果为Watch提供全新的开发框架WatchKit.本教程是国内第一本A ...
- 指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程
指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程 1.4.2 指示灯组 指示灯组的放大图如图1.5所示. 图1.5 指示灯组 各个指示灯对应的功能如下: q RX:对应于0号端口, ...
- 游戏控制杆OUYA游戏开发快速入门教程
游戏控制杆OUYA游戏开发快速入门教程 1.2.2 游戏控制杆 游戏控制杆各个角度的视图,如图1-4所示,它的硬件规格是本文选自OUYA游戏开发快速入门教程大学霸: 图1-4 游戏控制杆各个角度的 ...
- Query 快速入门教程
Query 快速入门教程 http://www.365mini.com/page/jquery-quickstart.htm#what_is_jquery jquery常用方法及使用示例汇总 http ...
- Realm for Android快速入门教程
介绍 如果你关注安卓开发的最新趋势,你可能已经听说过Realm.Realm是一个可以替代SQLite以及ORMlibraries的轻量级数据库. 相比SQLite,Realm更快并且具有很多现代数据库 ...
- CMake快速入门教程-实战
http://www.ibm.com/developerworks/cn/linux/l-cn-cmake/ http://blog.csdn.net/dbzhang800/article/detai ...
随机推荐
- jquery1.9学习笔记 之选择器(基本元素三)
标签选择器("element") 描述: 选择所有与给出标签名相匹配的元素. 同功能的JS原生方法:getElementByTagName() 例子: 查找每个div元素. &l ...
- destoon系统商城加淘宝客按钮方法
destoon系统很多喜欢运营B2B的站长都在用,其中的商城模块常常被用来做淘宝客,其中的难点是如何把购买按钮做成淘宝客地址,这个问题的修改在论坛上被叫价50元,下面小编把这个实用的方法分享下,希望对 ...
- http head
Accept HTTP_ACCEPT Accept-Charset HTTP_ACCEPT-CHARSET Accept-Encoding HTTP_ACCEPT-ENCODING Accept-La ...
- 部署在腾讯云的公益网站遭受了一次CC攻击
版权声明:本文由黄希彤 原创文章,转载请注明出处: 文章原文链接:https://www.qcloud.com/community/article/651089001483090830 来源:腾云阁 ...
- Linux 删除空行
在Linux上处理一些数据文件时,有时候需要将其中的空行过滤掉,系统中提供的各种工具都可以完成这个功能.将常用的介绍如下吧:1. grep grep . data.txt grep -v '^$' d ...
- hdu4623:crime 数学优化dp
鞍山热身赛的题,也是去年多校原题 题目大意: 求n个数的排列中满足相邻两个数互质的排列的数量并取模 当时的思路就是状压dp.. dp[i][state] state用二进制记录某个数是否被取走,i ...
- USACO5.4-Character Recognition
题目大意是字符串识别一道细节很繁琐的DP,要用到很多数组一开始还真看不出是DP,后来参考了别人的代码,然后又按自己的思路重头到尾写了,虽然速度不咋的 Executing... Test 1: TEST ...
- Highcharts 点击反选
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- Linux备份
Eking<longpeisky@vip.qq.com> 19:35:17 增量备份是针对于上一次备份(无论是哪种备份):备份上一次备份后,所有发生变化的文件. (增量备份过程中,只备份 ...
- 利用Excel批量高速发送电子邮件
利用Excel批量高速发送电子邮件,分两步: 1. 准备待发送的数据: a.) 打开Excel,新建Book1.xlsx b.) 填入以下的内容, 第一列:接收人,第二列:邮件标题,第三列:正文,第四 ...