Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现、分类、聚类等。Mahout最大的优点就是基于hadoop实现,把很多以前运行于单机上的算法,转化为了MapReduce模式,这样大大提升了算法可处理的数据量和处理性能。



一、Mahout安装、配置



1、下载并解压Mahout

http://archive.apache.org/dist/mahout/

tar -zxvf mahout-distribution-0.9.tar.gz



2、配置环境变量

# set mahout environment

export MAHOUT_HOME=/mnt/jediael/mahout/mahout-distribution-0.9

export MAHOUT_CONF_DIR=$MAHOUT_HOME/conf

export PATH=$MAHOUT_HOME/conf:$MAHOUT_HOME/bin:$PATH



3、安装mahout

[jediael@master mahout-distribution-0.9]$ pwd

/mnt/jediael/mahout/mahout-distribution-0.9

[jediael@master mahout-distribution-0.9]$ mvn install



4、验证Mahout是否安装成功

    执行命令mahout。若列出一些算法,则成功:

[jediael@master mahout-distribution-0.9]$ mahout
Running on hadoop, using /mnt/jediael/hadoop-1.2.1/bin/hadoop and HADOOP_CONF_DIR=
MAHOUT-JOB: /mnt/jediael/mahout/mahout-distribution-0.9/examples/target/mahout-examples-0.9-job.jar
An example program must be given as the first argument.
Valid program names are:
arff.vector: : Generate Vectors from an ARFF file or directory
baumwelch: : Baum-Welch algorithm for unsupervised HMM training
canopy: : Canopy clustering
cat: : Print a file or resource as the logistic regression models would see it
cleansvd: : Cleanup and verification of SVD output
clusterdump: : Dump cluster output to text
clusterpp: : Groups Clustering Output In Clusters
cmdump: : Dump confusion matrix in HTML or text formats
concatmatrices: : Concatenates 2 matrices of same cardinality into a single matrix
cvb: : LDA via Collapsed Variation Bayes (0th deriv. approx)
cvb0_local: : LDA via Collapsed Variation Bayes, in memory locally.
evaluateFactorization: : compute RMSE and MAE of a rating matrix factorization against probes
fkmeans: : Fuzzy K-means clustering
hmmpredict: : Generate random sequence of observations by given HMM
itemsimilarity: : Compute the item-item-similarities for item-based collaborative filtering
kmeans: : K-means clustering
lucene.vector: : Generate Vectors from a Lucene index
lucene2seq: : Generate Text SequenceFiles from a Lucene index
matrixdump: : Dump matrix in CSV format
matrixmult: : Take the product of two matrices
parallelALS: : ALS-WR factorization of a rating matrix
qualcluster: : Runs clustering experiments and summarizes results in a CSV
recommendfactorized: : Compute recommendations using the factorization of a rating matrix
recommenditembased: : Compute recommendations using item-based collaborative filtering
regexconverter: : Convert text files on a per line basis based on regular expressions
resplit: : Splits a set of SequenceFiles into a number of equal splits
rowid: : Map SequenceFile<Text,VectorWritable> to {SequenceFile<IntWritable,VectorWritable>, SequenceFile<IntWritable,Text>}
rowsimilarity: : Compute the pairwise similarities of the rows of a matrix
runAdaptiveLogistic: : Score new production data using a probably trained and validated AdaptivelogisticRegression model
runlogistic: : Run a logistic regression model against CSV data
seq2encoded: : Encoded Sparse Vector generation from Text sequence files
seq2sparse: : Sparse Vector generation from Text sequence files
seqdirectory: : Generate sequence files (of Text) from a directory
seqdumper: : Generic Sequence File dumper
seqmailarchives: : Creates SequenceFile from a directory containing gzipped mail archives
seqwiki: : Wikipedia xml dump to sequence file
spectralkmeans: : Spectral k-means clustering
split: : Split Input data into test and train sets
splitDataset: : split a rating dataset into training and probe parts
ssvd: : Stochastic SVD
streamingkmeans: : Streaming k-means clustering
svd: : Lanczos Singular Value Decomposition
testnb: : Test the Vector-based Bayes classifier
trainAdaptiveLogistic: : Train an AdaptivelogisticRegression model
trainlogistic: : Train a logistic regression using stochastic gradient descent
trainnb: : Train the Vector-based Bayes classifier
transpose: : Take the transpose of a matrix
validateAdaptiveLogistic: : Validate an AdaptivelogisticRegression model against hold-out data set
vecdist: : Compute the distances between a set of Vectors (or Cluster or Canopy, they must fit in memory) and a list of Vectors
vectordump: : Dump vectors from a sequence file to text
viterbi: : Viterbi decoding of hidden states from given output states sequence

二、使用简单示例验证mahout

1、启动Hadoop

2、下载测试数据

           http://archive.ics.uci.edu/ml/databases/synthetic_control/链接中的synthetic_control.data

或者百度一下也很容易找到这个示例数据。

3、上传测试数据

hadoop fs -put synthetic_control.data testdata

4、 使用Mahout中的kmeans聚类算法,执行命令:

mahout -core  org.apache.mahout.clustering.syntheticcontrol.kmeans.Job

花费9分钟左右完成聚类 。

5、查看聚类结果

    执行hadoop fs -ls /user/root/output,查看聚类结果。

[jediael@master mahout-distribution-0.9]$ hadoop fs -ls output
Found 15 items
-rw-r--r-- 2 jediael supergroup 194 2015-03-07 15:07 /user/jediael/output/_policy
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusteredPoints
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-0
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/clusters-1
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-10-final
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-2
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:03 /user/jediael/output/clusters-3
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-4
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:04 /user/jediael/output/clusters-5
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-6
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:05 /user/jediael/output/clusters-7
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:06 /user/jediael/output/clusters-8
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:07 /user/jediael/output/clusters-9
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/data
drwxr-xr-x - jediael supergroup 0 2015-03-07 15:02 /user/jediael/output/random-seeds

Mahout快速入门教程的更多相关文章

  1. Mahout快速入门教程 分类: B10_计算机基础 2015-03-07 16:20 508人阅读 评论(0) 收藏

    Mahout 是一个很强大的数据挖掘工具,是一个分布式机器学习算法的集合,包括:被称为Taste的分布式协同过滤的实现.分类.聚类等.Mahout最大的优点就是基于hadoop实现,把很多以前运行于单 ...

  2. 专为设计师而写的GitHub快速入门教程

    专为设计师而写的GitHub快速入门教程 来源: 伯乐在线 作者:Kevin Li     原文出处: Kevin Li 在互联网行业工作的想必都多多少少听说过GitHub的大名,除了是最大的开源项目 ...

  3. EntityFramework6 快速入门教程

    EntityFramework6 快速入门教程 不得不说EF在国内实在是太小众,相关的技术文章真实屈指可数,而且很多文章都很旧了,里面使用的版本跟如今的EF6差别还是比较大.我刚开始弄这个的时候真是绕 ...

  4. Apple Watch开发快速入门教程

     Apple Watch开发快速入门教程  试读下载地址:http://pan.baidu.com/s/1eQ8JdR0 介绍:苹果为Watch提供全新的开发框架WatchKit.本教程是国内第一本A ...

  5. 指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程

    指示灯组与3个复位按钮的介绍Arduino Yun快速入门教程 1.4.2  指示灯组 指示灯组的放大图如图1.5所示. 图1.5  指示灯组 各个指示灯对应的功能如下: q  RX:对应于0号端口, ...

  6. 游戏控制杆OUYA游戏开发快速入门教程

    游戏控制杆OUYA游戏开发快速入门教程 1.2.2  游戏控制杆 游戏控制杆各个角度的视图,如图1-4所示,它的硬件规格是本文选自OUYA游戏开发快速入门教程大学霸: 图1-4  游戏控制杆各个角度的 ...

  7. Query 快速入门教程

    Query 快速入门教程 http://www.365mini.com/page/jquery-quickstart.htm#what_is_jquery jquery常用方法及使用示例汇总 http ...

  8. Realm for Android快速入门教程

    介绍 如果你关注安卓开发的最新趋势,你可能已经听说过Realm.Realm是一个可以替代SQLite以及ORMlibraries的轻量级数据库. 相比SQLite,Realm更快并且具有很多现代数据库 ...

  9. CMake快速入门教程-实战

    http://www.ibm.com/developerworks/cn/linux/l-cn-cmake/ http://blog.csdn.net/dbzhang800/article/detai ...

随机推荐

  1. Nginx的安装及反向代理设置

    因为项目的缘故,接触到了Nginx的安装和反向代理设置,和大家分享下. 一.Nginx的下载.安装cd /homewget http://nginx.org/download/nginx-1.0.5. ...

  2. jQuery插件实现select下拉框左右选择_交换内容(multiselect2side)

    效果图: 使用jQuery插件---multiselect2side做法: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitio ...

  3. 判断Python输入是否为数字

    在接收raw_input方法后,判断接收到的字符串是否为数字 例如: str = raw_input("please input the number:") if str.isdi ...

  4. Activiti工作流学习-----基于5.19.0版本(1)

    该版本的Activiti运行须知: 1.JDK 6+,Eclipse最好是Kepler以上版本. 2.试验功能都有EXPERIMENTAL标注,被标注的部分不应该视为稳定的. 有兴趣的同学可以去了解下 ...

  5. ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()

    ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()   今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...

  6. 【杭州图铭科技有限公司招募贴】——“JUST DO IT”

    I'm convinced that the only thing that kept me going was that I loved what I did. ——Steve Paul Jobs( ...

  7. 自制单片机之十一……模数转换IC ADC0809

    我们重在实际制做,太罗嗦的内容我就不说了,只讲些跟制做有关的最精炼的知识. ADC0809是可以将我们要测量的模拟电压信号量转换为数字量从而可以进行存储或显示的一种转换IC.下面是它的管脚图和逻辑图: ...

  8. zoj2112

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2112 经典的动态区间第K大. 用树状数组套线段树. 对原数组建一个树 ...

  9. 关于bootstrap--表格(table的各种样式)

    1.table-striped:斑马线表格 2.table-bordered:带边框的表格 3.table-hover:鼠标悬停高亮的表格 4.table-condensed:紧凑型表格(单元格的内距 ...

  10. shell脚本一条命令直接发送http请求(xjl456852原创)

    我们知道nc命令是一个网络工具.可以连接tcp/udp.也能模拟发送http请求. 现在介绍通过shell脚本,一条命令直接发送http请求. 命令如下,可以对下面的地址等信息自行修改: #!/bin ...