package com.my.hadoop.mapreduce.partition;

import java.util.HashMap;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class ParCount {

public static class ParMap extends Mapper<LongWritable, Text, Text, InfoBean>{
        private Text key = new Text();
        @Override
        public void map(LongWritable key, Text value, Context context) throws java.io.IOException ,InterruptedException {
            String[] fields = value.toString().split("\t");
            String telNo = fields[1];
            long upPayLoad = Long.parseLong(fields[8]);
            long downPayLoad = Long.parseLong(fields[9]);
            InfoBean bean = new InfoBean(telNo, upPayLoad, downPayLoad);
            this.key.set(telNo);
            context.write(this.key, bean);
        }
    }
    
    public static class ParReduce extends Reducer<Text, InfoBean, Text, InfoBean>{
        @Override
        public void reduce(Text key, java.lang.Iterable<InfoBean> value, org.apache.hadoop.mapreduce.Reducer<Text,InfoBean,Text,InfoBean>.Context context) throws java.io.IOException ,InterruptedException {
            long up_sum = 0;
            long down_sum = 0;
            for (InfoBean bean : value) {
                up_sum += bean.getUpPayLoad();
                down_sum += bean.getDownPayLoad();
            }
            InfoBean bean = new InfoBean("", up_sum, down_sum);
            context.write(key, bean);
        }
    }
    
    /**
     * 分区,参数为Map的输出
     * @author yao
     *
     */
    public static class MyPar extends Partitioner<Text, InfoBean>{

private static Map<String, Integer> parFlag = new HashMap<String, Integer>();
        static {
            parFlag.put("135", 1);
            parFlag.put("136", 1);
            parFlag.put("137", 1);
            parFlag.put("138", 1);
            parFlag.put("139", 1);
            parFlag.put("150", 2);
            parFlag.put("159", 2);
            parFlag.put("182", 3);
            parFlag.put("183", 3);
        }
        
        @Override
        public int getPartition(Text key, InfoBean value, int arg2) {
            String telNo = key.toString().substring(0, 3);
            Integer code = parFlag.get(telNo);
            if (code == null) {
                code = 0;
            }
            
            return code;
        }
        
    }
    
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, ParCount.class.getSimpleName());;
        job.setJarByClass(ParCount.class);
        
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        job.setMapperClass(ParMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(InfoBean.class);
        
        job.setPartitionerClass(MyPar.class);                                        //指定自定义的分区类
        job.setNumReduceTasks(4);                   //需要根据分区的数量设置Reducer数量,多了会出现空文件,少了会报错
        
        job.setReducerClass(ParReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(InfoBean.class);
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        System.exit(job.waitForCompletion(true) ? 0 : 1);
        
    }

}

hadoop2.2.0 MapReduce分区的更多相关文章

  1. hadoop2.2.0 MapReduce求和并排序

    javabean必须实现WritableComparable接口,并实现该接口的序列化,反序列话和比较方法 package com.my.hadoop.mapreduce.sort; import j ...

  2. hadoop2.2.0 MapReduce的序列化

    package com.my.hadoop.mapreduce.dataformat; import java.io.DataInput;import java.io.DataOutput;impor ...

  3. 国内最全最详细的hadoop2.2.0集群的MapReduce的最简单配置

    简介 hadoop2的中的MapReduce不再是hadoop1中的结构已经没有了JobTracker,而是分解成ResourceManager和ApplicationMaster.这次大变革被称为M ...

  4. 编写简单的Mapreduce程序并部署在Hadoop2.2.0上运行

    今天主要来说说怎么在Hadoop2.2.0分布式上面运行写好的 Mapreduce 程序. 可以在eclipse写好程序,export或用fatjar打包成jar文件. 先给出这个程序所依赖的Mave ...

  5. Hadoop2.2.0 第一步完成MapReduce wordcount计算文本数量

    1.完成Hadoop2.2.0单机版环境搭建之后需要利用一个例子程序来检验hadoop2 的mapreduce的功能 //启动hdfs和yarn sbin/start-dfs.sh sbin/star ...

  6. 【hadoop2.6.0】用C++ 编写mapreduce

    hadoop通过hadoop streaming 来实现用非Java语言写的mapreduce代码. 对于一个一点Java都不会的我来说,这真是个天大的好消息. 官网上hadoop streaming ...

  7. 使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0

    使用命令行编译打包运行自己的MapReduce程序 Hadoop2.6.0 网上的 MapReduce WordCount 教程对于如何编译 WordCount.java 几乎是一笔带过… 而有写到的 ...

  8. Hadoop-2.2.0 + Hbase-0.96.2 + Hive-0.13.1(转)

    From:http://www.itnose.net/detail/6065872.html # 需要软件 Hadoop-2.2.0(目前Apache官网最新的Stable版本) Hbase-0.96 ...

  9. hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz的集群搭建(单节点)

    前言 本人呕心沥血所写,经过好一段时间反复锤炼和整理修改.感谢所参考的博友们!同时,欢迎前来查阅赏脸的博友们收藏和转载,附上本人的链接.http://www.cnblogs.com/zlslch/p/ ...

随机推荐

  1. 【经典面试题】实现平方根函数sqrt

    本文将从一道经典的面试题说起:实现平方根函数,不得调用其它库函数. 函数原型声明例如以下: double Sqrt(double A); 二分法 二分法的概念 求,等价于求方程的非负根(解).求解方程 ...

  2. MyEclipse修改servlet模版

    找到myeclipse安装目录中的 然后把这个jar包复制到桌面 以压缩包的方式打开 之后保存, 然后把修改的这个jar包放到刚开的路径,替换已经存在的! 完成!

  3. JQuery图片轮换 nivoSlider图片轮换

    效果图: 第一步:添加引用 <script src="jquery-ui-1.9.2.custom.min.js" type="text/javascript&qu ...

  4. 获取EnterpriseLibrary企业库配置文件中ConnectionStrings(原创)

    在使用企业类库时想取出单独企业配置文件中的连接字符串遍历,并放到自己的数据库处理类中,在查找了很久的资料后都没有找到,于是自己探索着写了一个,共享给大家以做参考: ConfigurationSourc ...

  5. rpm命令数据库修复日志

    今天在linux安装软件过程中遇到了一个小坑,rpm数据库被破坏: 状况: #rpm -qa | grep rpm 返回: [解决方案] 删除旧数据库,然后重建数据库: 删除旧数据库: # rm /v ...

  6. Objective-C学习篇10—NSDate与NSDateFormatter

    NSDate NSDate 时间类,继承自NSObject,其对象表示一个时间点 NSDate *date = [NSDate date]; NSLog(@"date = %@", ...

  7. ubuntu 下源码安装Postgreql pgAdmin3

    一.安装 PostgreSQL 1.安装相关依赖,在终端下执行: sudo apt-get install zlib1g-dev    sudo apt-get install libreadline ...

  8. 武汉科技大学ACM :1007: A+B for Input-Output Practice (VII)

    Problem Description Your task is to Calculate a + b. Input The input will consist of a series of pai ...

  9. LR:Code - 60990,Code - 10343 问题解决

    Code - 60990 Error: Two Way Communication Error: Function two_way_comm_post_message /two_way_comm_po ...

  10. 记一次 nginx 504 Gateway Time-out

    今天程序在执行一项excel导出任务的时候 出现了nginx超时的提示 nginx 504 Gateway Time-out 排查过程: 查看该任务 发现内容是一个数据量20000条信息 每条信息有5 ...