有n个格子,初始的时候pos=1,然后丢骰子,然后新的pos为pos+骰子的点数,走到新的pos,可以捡走该pos上的黄金。

特殊的是,如果新的pos超过了n,那么是不会走的,要重新丢骰子。

所以要分当前的位置丢骰子后是不是会超过n来考虑

以第三个样例解释

dp[3] = 9

dp[2] = 1/6*dp[3] + 5/6*dp[2]

然后算出dp[2]后再加上a[2]

同理,dp[1] = 1/6*dp[3]+1/6*dp[2]+4/6*dp[1]

算出dp[1]后,加上a[1]

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef __int64 LL;
const int INF = <<;
/* */
const int N = + ;
double dp[N];
int a[N];
int main()
{
int t, n;
scanf("%d", &t);
for (int k = ; k <= t; ++k)
{
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
dp[n] = a[n];
for (int i = n - ; i >= ; --i)
{
double tmp = ;
for (int j = i + ; j <= n &&j - i <= ; ++j)
tmp += dp[j] / ;
if (n - i < )
{
tmp *= / (double)((n - i));
}
dp[i] = tmp + a[i];
}
printf("Case %d: %.6lf\n",k, dp[]);
}
return ;
}

lightoj1030(期望dp)的更多相关文章

  1. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  6. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  7. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  8. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  9. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  10. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. 怎样改动Myeclipse10.7的Servlet模板

    (1)在myeclipse10.0曾经的版本号中咱庄文件夹仅仅有叶仅仅需找到plugins在文件夹下找到: com.genuitec.eclipse.wizards_9.0.0.me201211011 ...

  2. [Android Studio 权威教程]Windows下安装Android Studio

    从AS 0.5版本号開始使用.也是AS的推行者,在ApkBus公布的第一篇Android Studio Perview 2 获得了50K的浏览,1800多条回复下载. 在我的[Android Stud ...

  3. bestcoder.hdu.edu.cn

    http://bestcoder.hdu.edu.cn/ Problem A 题目链接: http://bestcoder.hdu.edu.cn/contests/contest_showproble ...

  4. ajax+jsp实现三级联动下拉框

    js文件sjld.js  : $(document).ready( function(){ $.ajax({ url:"bindZ", type:"get", ...

  5. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  6. JAVA网络爬虫WebCollector深度解析——爬虫内核

    WebCollector爬虫官网:https://github.com/CrawlScript/WebCollector 技术讨论群:250108697 怎样将爬虫内核导入自己的项目? 1.进入爬虫官 ...

  7. iOS学习笔记(十五)——数据库操作(SQLite)

    SQLite (http://www.sqlite.org/docs.html) 是一个轻量级的关系数据库.SQLite最初的设计目标是用于嵌入式系统,它占用资源非常少,在嵌入式设备中,只需要几百K的 ...

  8. SQL视图索引

    视图: 视图就相当于一个查询结果,它相对应的是表 表----真正存储数据的地方 视图---不存储数据,展示查询的结果 注意: 1.视图就是为了查询数据方便.一般不要试图向视图中插入数据,容易出错. 2 ...

  9. [Windows Phone]AnimationHelper管理分散的Storyboard

    问题描述: 在Windows Phone开发时候,可能存在这样的问题: 某一个控件需要一个特定的展现(这里假定是一个特定动画),那么我们会这么解决这个问题呢? 打开Blend,根据需求需求给控件添加动 ...

  10. leetcode day6 -- String to Integer (atoi) &amp;&amp; Best Time to Buy and Sell Stock I II III

    1.  String to Integer (atoi) Implement atoi to convert a string to an integer. Hint: Carefully con ...