有n个格子,初始的时候pos=1,然后丢骰子,然后新的pos为pos+骰子的点数,走到新的pos,可以捡走该pos上的黄金。

特殊的是,如果新的pos超过了n,那么是不会走的,要重新丢骰子。

所以要分当前的位置丢骰子后是不是会超过n来考虑

以第三个样例解释

dp[3] = 9

dp[2] = 1/6*dp[3] + 5/6*dp[2]

然后算出dp[2]后再加上a[2]

同理,dp[1] = 1/6*dp[3]+1/6*dp[2]+4/6*dp[1]

算出dp[1]后,加上a[1]

 #include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef __int64 LL;
const int INF = <<;
/* */
const int N = + ;
double dp[N];
int a[N];
int main()
{
int t, n;
scanf("%d", &t);
for (int k = ; k <= t; ++k)
{
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
dp[n] = a[n];
for (int i = n - ; i >= ; --i)
{
double tmp = ;
for (int j = i + ; j <= n &&j - i <= ; ++j)
tmp += dp[j] / ;
if (n - i < )
{
tmp *= / (double)((n - i));
}
dp[i] = tmp + a[i];
}
printf("Case %d: %.6lf\n",k, dp[]);
}
return ;
}

lightoj1030(期望dp)的更多相关文章

  1. lightoj1038(数学期望dp)

    题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  6. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  7. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  8. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  9. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  10. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. POJ 3017 单调队列dp

    Cut the Sequence Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 8764   Accepted: 2576 ...

  2. 最完整的历史记录hadoop

    课程主要涉及Hadoop Sqoop.Flume.Avro重要子项目的技术实战 课程针对人群 1.本课程适合于有一定java基础知识.对数据库和sql语句有一定了解,熟练使用linux系统的技术人员, ...

  3. Python 学习入门(23)—— 进程

    本文介绍Python的os包中有查询和修改进程信息的函数,Python的这些工具符合Linux系统的相关概念,所以可以帮助理解Linux体系. 1. 进程信息 os包中相关函数如下: uname()  ...

  4. 积累的VC编程小技巧之工具提示

    1.用鼠标移动基于对话框的无标题栏程序的简单方法 void CVCTestDlg::OnLButtonDown(UINT nFlags, CPoint point) {    //一句话解决问题    ...

  5. delphi 网页提交按钮执行点击事件

    遍历即可实现,下列代码仅供参考: var i: integer; T: OleVariant; begin T := WebBrowser1.Document; do begin if T.all.i ...

  6. HttpSession具体解释

    session的机制 http是无状态的协议,客户每次读取web页面时,server都打开新的会话,并且server也不会自己主动维护客户的上下文信息,那么要怎么才干实现会话跟踪呢?session就是 ...

  7. OleContainer操作Excel以二进制方式读写数据库

    需求源头:OleContainer操作Excel,想把Excel以二进制方式存入数据库,并且以二进制方式读取存入流:Procedure SaveToStream(ADOTable1: TAdoTabl ...

  8. Delphi动态申请数组内存的方法(不使用SetLength,采用和C相似的方式)

    procedure TForm1.Button1Click(Sender: TObject);type  TArr = array [0..0] of Integer;  PArr = ^TArr;v ...

  9. ifconfig 源码

    贴一下ifconfig的源码(它属于net-tool软件包),以备平时查看网络信息的配置. /* * ifconfig This file contains an implementation of ...

  10. 主流JavaScript框架(Dojo、Google Closure、jQuery、Prototype、Mootools和YUI)的分析和对比

    本文主要选取了目前比较流行的JavaScript框架Dojo.Google Closure.jQuery.Prototype.Mootools和YUI进行对比,主要是根据网上的资料整理而成,希望可以供 ...