lightoj1030(期望dp)
有n个格子,初始的时候pos=1,然后丢骰子,然后新的pos为pos+骰子的点数,走到新的pos,可以捡走该pos上的黄金。
特殊的是,如果新的pos超过了n,那么是不会走的,要重新丢骰子。
所以要分当前的位置丢骰子后是不是会超过n来考虑
以第三个样例解释
dp[3] = 9
dp[2] = 1/6*dp[3] + 5/6*dp[2]
然后算出dp[2]后再加上a[2]
同理,dp[1] = 1/6*dp[3]+1/6*dp[2]+4/6*dp[1]
算出dp[1]后,加上a[1]
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <iostream>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <math.h>
using namespace std;
#pragma warning(disable:4996)
#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef __int64 LL;
const int INF = <<;
/* */
const int N = + ;
double dp[N];
int a[N];
int main()
{
int t, n;
scanf("%d", &t);
for (int k = ; k <= t; ++k)
{
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
dp[n] = a[n];
for (int i = n - ; i >= ; --i)
{
double tmp = ;
for (int j = i + ; j <= n &&j - i <= ; ++j)
tmp += dp[j] / ;
if (n - i < )
{
tmp *= / (double)((n - i));
}
dp[i] = tmp + a[i];
}
printf("Case %d: %.6lf\n",k, dp[]);
}
return ;
}
lightoj1030(期望dp)的更多相关文章
- lightoj1038(数学期望dp)
题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- [NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- 【BZOJ-4008】亚瑟王 概率与期望 + DP
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 832 Solved: 5 ...
- 期望dp BZOJ3450+BZOJ4318
BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...
- HDU 4405 期望DP
期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...
- POJ 2096 【期望DP】
题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...
- ZOJ 3822 Domination 期望dp
Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...
- poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)
Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...
随机推荐
- poj1066 Jugs
poj1066 Jugs http://poj.org/problem?id=1606 解题思路:本题可以用数学方法解得,最易理解,常规的解法是搜索.直接用接近模拟的广度优先搜索即可过. 给两个容器, ...
- POJ 1273 Drainage Ditches(网络流,最大流)
Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover ...
- pig对null的处理(实际,对空文本处理为两种取值null或‘’)
pig对文本null的处理非常特殊.会处理成两种null,还会处理成''这样的空值. 比方,读name,age,sex日志信息.name取值处理,假设记录为".,,"这样,会将na ...
- Oracle静态监听与动态监听概念全解析
基于11g,linux5.5做出的测试,单实例数据库做出的测试. 1.注册 Instance到监听器去注册自己的Instance_name与ORACLE_HOME,还可以选择添加global_dbna ...
- Lucene.Net 2.3.1开发介绍 —— 简介
原文:Lucene.Net 2.3.1开发介绍 -- 简介 Lucene.Net是Lucene在dot net平台上的移植版本.它的功能与Lucene一样,都是用来提供一组API,让我们能快速开发自己 ...
- 在实体类中将数据库中数据类型为CLOB的数据转化成String类型
@Lob @Basic(fetch = FetchType.EAGER) @Column(name = "JYAQ", columnDefinition = &qu ...
- NET5
ASP.NET5(RC1) - 翻译 前言 ASP.NET 5 是一次令人惊叹的对于ASP.NET的创新革命. 他将构建目标瞄准了 .NET Core CLR, 同时ASP.NET又是对于云服务进行优 ...
- Windbg抓取程序崩溃的dmp文件的方法
Windbg抓取程序崩溃的dmp文件的方法 一. 简介 windbg是在windows平台下,强大的用户态和内核态调试工具.相比较于Visual Studio,它是一个轻量级的调试工具, ...
- Using Qt to build an Omi App for iOS (and Android)
JUNE 6, 2014 / HHARTZ Working on projects where the technology is pre-determined, it's often difficu ...
- js中substring或split方法取得URL中的域名
1.split方式 <html> <head></head> <body onload="convertTemp()"> <s ...