poj1321 http://poj.org/problem?id=1321

我们可以把棋盘的每一行看做是一个状态,如果某一列放置了棋子,那么就标记为1,否则就标记为0.然后把它看成是一个二进制数,然后转为10进制数,就可以当做数组下标然后进行状态转移了

设dp[i][s] 为处理到第i行时,状态为s的方法数

那么我们枚举第i-1行的所有状态s

dp[i][s] += dp[i-1][s]; //表示第i行不放置棋子的方法数

dp[i][s|(1<<j)] += dp[i-1][s] //表示第i行第j列放置棋子的方法数   (前提是 chess[i][j]=='#' && 状态s第j列没有放过棋子)

 #include <stdio.h>
#include <string.h>
char chess[][];int dp[][<<];
int n,k;
int main()
{
int i,j,s,ss;
while(scanf("%d%d",&n,&k)!=EOF)
{
int ans = ;
if(n==-) return ;
memset(dp,,sizeof(dp));
for(i=; i<=n; ++i)
{
scanf("%s",chess[i]);
}
dp[][] = ;
for(i=; i<=n; ++i)
for(s=; s<(<<n); ++s)
{ for(j=; j<n; ++j)
if(chess[i][j]=='#'&&((<<j)&s)==)
dp[i][s|<<j] += dp[i-][s];//表示第i行第j列放置棋子的方法数
dp[i][s] += dp[i-][s]; //表示第i行不放置棋子的方法数
}
///for(j=1; j<=n; ++j)
for(s=0; s<(1<<n); ++s)
{
i = s;
int cnt = ;
for(;i;i-= i&-i)//统计状态s有多少个1,表示放了多少个棋子
cnt ++;
if(cnt==k)
ans+= dp[n][s];
}
printf("%d\n",ans);
}
return ;
}

poj3254 http://poj.org/problem?id=3254

本来这一题也想用上面那题的思路做,可是后来发现不行,因为上面那题一行只选择一个位置,而这题一行可以选择多个位置。

那么我们这题可以枚举多个位置,如果和上一行的状态不冲突,那么上一行的状态就能转移到这一行

 #include <stdio.h>
#include <string.h> int field[];
int situation[];
int dp[][<<];
const int MOD = ;
bool isOk(int s)
{
if(s&(s>>)) return false;
return true;
} int main()
{
int n,m,i,j,s,ss,cnt,ans;
while(scanf("%d%d",&n,&m)!=EOF)
{
ans = cnt = ;
memset(dp,,sizeof(dp));
memset(field,,sizeof(field));
for(s=; s<(<<m); ++s) if(isOk(s)) situation[cnt++] = s;//记录所有可行的状态,即不能有相邻的1
for(i=; i<n; ++i)
for(j=; j<m; ++j)
{
scanf("%d",&s);
field[i] |= (!s)<<j;//这里这样存的含义是,如果situation[] & field[] 不为0,说明状态situation不行
} //dp[i][j] 表示处理完前i行,第j个状态的方法数
for(i=; i<cnt; ++i)
if( !(situation[i] & field[]))
dp[][i] = ; for(i=; i<n; ++i)
for(s=; s<cnt; ++s)
{
if(situation[s]&field[i]) continue;//这一行的状态要合法
for(ss=; ss<cnt; ++ss)
{
if(situation[ss] & situation[s]) continue;//这一行的状态和上一行的状态不合法
dp[i][s] += dp[i-][ss];//只要上一行的状态ss和这一行的状态s不冲突,那么就能转化为状态s
dp[i][s] %= MOD;
}
}
for(i=; i<cnt; ++i)
ans = (ans + dp[n-][i]) % MOD;
printf("%d\n",ans); }
return ;
}

poj1185 http://poj.org/problem?id=1185

和上面那题差不多,只是当前行的状态不止和上一行有关,还和上上一行有关,所以数组要多开一维

奇怪的是为什么用scanf("%c");G++ac,C++wa    用scanf("%s")G++和C++都wa

 /*
分析:一行的状态不能有 11(连续的两个1) 也能有101(隔一个空然后出现一个1)
dp[i][j][k] 表示第i行状态为j第i-1行状态为k时,最多有多少个炮兵摆放
dp[i][j][k] = max(dp[i][j][k],dp[i-1][k][t]+num[j]);
*/ #include <stdio.h>
#include <string.h>
int situation[];
char matrix[][];
int map[];
int num[];
int dp[][][];
bool isOk(int s)
{
if(s&(s<<)) return false;
if(s&(s<<)) return false;
return true;
} int count(int s)
{
int ret = ;
for(;s; s-= (s&-s))//统计状态s有多少个1
ret++;
return ret;
}
inline int max(const int &a, const int &b)
{
return a < b ? b : a;
}
int main()
{
int n,m,i,j,k,s,cnt,ans,t;
char ch;
while(scanf("%d%d",&n,&m)!=EOF)
{
cnt = ans = ;
memset(dp,-,sizeof(dp));
for(s=; s<(<<m); ++s) if(isOk(s))
{
num[cnt] = count(s);
situation[cnt++] = s;
} for(i=; i<n; ++i)
{ getchar();
map[i] = ;
for(j=; j<m; ++j)
{
scanf("%c",&ch);
if(ch=='H') map[i] |= <<j;
}
}
for(i=; i<cnt; ++i)
if(!(situation[i] & map[]))
dp[][i][] = num[i];
for(i=; i<n; ++i)
for(j=; j<cnt; ++j)
{
if(situation[j] & map[i]) continue;
for(k=; k<cnt; ++k)
{
if(situation[j] & situation[k]) continue;
for(t= ;t<cnt; ++t)
{
if(situation[j] & situation[t]) continue;
if(dp[i-][k][t]==-) continue;
dp[i][j][k] = max(dp[i][j][k],dp[i-][k][t] + num[j]);
}
}
}
for(i=; i<n; ++i)
for(j=; j<cnt; ++j)
for(k=; k<cnt; ++k)
ans = max(ans,dp[i][j][k]);
printf("%d\n",ans);
} return ;
}

hdu3001 http://acm.hdu.edu.cn/showproblem.php?pid=3001

平常的状态压缩,都是某个位置放(1)或者不放(0),所以可以直接用二进制进行压缩
但是这题,每个点可以走两次,那么就可以标记为0,1,2 所以要用三进制进行压缩。
即用一个数组存储每个状态的三进制的每位

 #include <stdio.h>
#include <string.h>
const int INF = <<;
int three[],situation[][],edge[][],dp[][];
void init()
{
int i,t,cnt;
three[] = ;
for(i=; i<=; ++i)
three[i] = three[i-] * ;
for(i=; i<; ++i)
{
t = i;
cnt = ;
while(t)//存储状态的三进制的每一位
{
situation[i][cnt++] = t % ;
t /= ;
}
}
}
inline int min(const int &a, const int &b)
{
return a < b ? a : b;
}
int main()
{
init();
int n,m,i,j,a,b,c,ans,s;
while(scanf("%d%d",&n,&m)!=EOF)
{ for(i=; i<n; ++i)
for(j=; j<n; ++j)
edge[i][j] = INF;
for(i=; i<n; ++i)
for(s=; s<three[n]; ++s)
dp[s][i] = INF;
ans = INF;
for(i=; i<m; ++i)
{
scanf("%d%d%d",&a,&b,&c);
a--,b--;
if(edge[a][b] > c)
edge[a][b] = edge[b][a] = c;
}
for(i=; i<n; ++i) dp[three[i]][i] = ;//处于源点的距离为0
//因为走过某些城市可以是任意组合的,所以枚举这些状态
for(s=; s<three[n]; ++s)
{
bool flag = true;
for(i=; i<n; ++i)
{
if(situation[s][i]==) flag = false;//状态s的第i位为0,说明没有走过所有的城市
if(dp[s][i]==INF) continue;
for(j=; j<n; ++j)
{
if(i==j) continue;
if(edge[i][j]==INF || situation[s][j]==) continue;
int nextS = s + three[j];
dp[nextS][j] = min(dp[nextS][j],dp[s][i] + edge[i][j]);
}
}
if(flag)//走过所有的状态
{
for(i=; i<n; ++i)
ans = min(ans,dp[s][i]);
}
}
if(ans == INF)
printf("-1\n");
else
printf("%d\n",ans);
}
return ;
}

状态压缩dp入门的更多相关文章

  1. Hdu-1565 方格取数(1) (状态压缩dp入门题

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. POJ3254Corn Fields(状态压缩DP入门)

    题目链接 题意:一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧,可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方格不能同时放牛,即牛与牛不能相邻.问有多少种放牛方案(一 ...

  3. 状态压缩DP入门题

    . /*本题为状态压缩题 题目大意 : 一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧, 可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方 格不能同时放牛(不包括斜着的 ...

  4. poj - 3254 Corn Fields (状态压缩dp入门)

    http://poj.org/problem?id=3254 参考:http://blog.csdn.net/accry/article/details/6607703 农夫想在m*n的土地上种玉米, ...

  5. 状态压缩dp 入门

    1.有一张n*m (n<=m)的棋盘,在上面放n个中国象棋里的车,使得任意两个车不能相互攻击,总共有多少种不同的方案. 2.有一张n*m (n<=m)的棋盘,其中有些格子里面不能放,在上面 ...

  6. POJ3254(入门状态压缩dp)

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13203   Accepted: 6921 Desc ...

  7. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  8. poj 3311 floyd+dfs或状态压缩dp 两种方法

    Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6436   Accepted: 3470 ...

  9. hoj2662 状态压缩dp

    Pieces Assignment My Tags   (Edit)   Source : zhouguyue   Time limit : 1 sec   Memory limit : 64 M S ...

随机推荐

  1. MFC消息映射的原理:笔记

    多态的实现机制有两种,一是通过查找绝对位置表,二是查找名称表:两者各有优缺点,那么为什么mfc的消息映射采用了第二种方法,而不是c++使用的第一种呢?因为在mfc的gui类库是一个庞大的继承体系,而里 ...

  2. c++ anonymous union,struct -- 匿名联合体和机构体

    c++ anonymous union,struct -- 匿名联合体和机构体 结构体和联合体各自的基本用法不赘述,仅说一下他们匿名时访问的情况.如果是token不同,可以直接跨层访问.例子 #inc ...

  3. centos7里默认python升级到2.7.11

    CentOS镜像使用帮助 http://mirrors.163.com/.help/centos.html   安装gcc yum install gcc* openssl openssl-devel ...

  4. js下读取input中的value值

    很多人(包括我),总想像以前操作js一样,读取到input中的值:document.getElementById('').value; 结果事实证明这样读到得是null. eval(document. ...

  5. Windowbuilder之swt designer安装与使用(转)

    SWT可视化设计,可以使用Google的WindowBuilder. 在Google Code中,搜索WindowBuilder就可以看到路径. 在Eclipse中   Help--->Inst ...

  6. [Android]Button按下后修改背景图

    Button按下后修改背景图 错误做法:为Button添加OnTouch事件监听,根据ACTION_UP和ACTION_DOWN动作来修改Button的背景图 错误原因:从理论上讲,按钮按下修改背景色 ...

  7. robots.txt禁止搜索引擎收录

    禁止搜索引擎收录的方法         一.什么是robots.txt文件? 搜索引擎通过一种程序robot(又称spider),自动访问互联网上的网页并获取网页信息. 您可以在您的网站中创建一个纯文 ...

  8. The tempfile module

    The tempfile module The tempfile module This module allows you to quickly come up with unique names ...

  9. Deep learning From Image to Sequence

    本文笔记旨在概括地讲deep learning的经典应用.内容太大,分三块. ------------------------------------------------------------- ...

  10. SpringMVC配置+小例子

    先加入SpringMVC的jar包,这个官网上有,下载下来放到lib文件夹下. web.xml文件: <?xml version="1.0" encoding="U ...