Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in polynomial time complexity.

题目大意:

给定一个整数n,返回n!(n的阶乘)数字中的后缀0的个数。

注意:你的解法应该满足多项式时间复杂度。

解题思路:

参考博文:http://www.geeksforgeeks.org/count-trailing-zeroes-factorial-number/

朴素解法:

首先求出n!,然后计算末尾0的个数。(重复÷10,直到余数非0)

该解法在输入的数字稍大时就会导致阶乘得数溢出,不足取。

O(logn)解法:

一个更聪明的解法是:考虑n!的质数因子。后缀0总是由质因子2和质因子5相乘得来的。如果我们可以计数2和5的个数,问题就解决了。考虑下面的例子:

n = 5: 5!的质因子中 (2 * 2 * 2 * 3 * 5)包含一个5和三个2。因而后缀0的个数是1。

n = 11: 11!的质因子中(2^8 * 3^4 * 5^2 * 7)包含两个5和三个2。于是后缀0的个数就是2。

我们很容易观察到质因子中2的个数总是大于等于5的个数。因此只要计数5的个数就可以了。那么怎样计算n!的质因子中所有5的个数呢?一个简单的方法是计算floor(n/5)。例如,7!有一个5,10!有两个5。除此之外,还有一件事情要考虑。诸如25,125之类的数字有不止一个5。例如,如果我们考虑28!,我们得到一个额外的5,并且0的总数变成了6。处理这个问题也很简单,首先对n÷5,移除所有的单个5,然后÷25,移除额外的5,以此类推。下面是归纳出的计算后缀0的公式。

By given number 4617.

5^1 : 4617 ÷ 5 = 923.4, so we get 923 factors of 5

5^2 : 4617 ÷ 25 = 184.68, so we get 184 additional factors of 5

5^3 : 4617 ÷ 125 = 36.936, so we get 36 additional factors of 5

5^4 : 4617 ÷ 625 = 7.3872, so we get 7 additional factors of 5

5^5 : 4617 ÷ 3125 = 1.47744, so we get 1 more factor of 5

5^6 : 4617 ÷ 15625 = 0.295488, which is less than 1, so stop here.

public class Solution {
public int trailingZeroes(int n) {//0的个数取决于n中质数5的个数,因为2的个数总是大于5,注意这里i的类型是long,不是int,否则会溢出
int result = 0;
for(long i=5; n/i>0; i*=5){
result += (n/i);
}
return result;
}
}

算法1耗时1ms, 更简单的算法是算法2,计算单个5被除的次数,耗时2ms

public class Solution {
public int trailingZeroes(int n) {//0的个数取决于n中质数5的个数,
int zeroCount = 0;
while(n>0){
n/=5;
zeroCount+=n;
}
return zeroCount;
}
}

Pascal's Triangle II

Given an index k, return the kth row of the Pascal's triangle.

For example, given k = 3,
Return [1,3,3,1].

public class Solution {
public List<Integer> getRow(int rowIndex) {
/*first method used in Pascal's Triangle, just return the wanted row List<List<Integer>> listReturn = new ArrayList<List<Integer>>();
for(int i=0;i<rowIndex+1;i++){
List<Integer> tempList= new ArrayList<Integer>();
for(int j=0;j<=i;j++){
if(j==0||j==i)tempList.add(1);
else tempList.add(listReturn.get(i-1).get(j-1)+listReturn.get(i-1).get(j));
}
listReturn.add(tempList);
}
return listReturn.get(rowIndex);*/ // second way: deal with the wanted row directly, look it as a integration of all the before rows
//把第三行看成是第1、2行的结合,先构造第1、2行的data,然后按照相同的原则计算第3行:K(i)(j)=K(i-1)(j-1)+K(i-1)(j)
//例如,先构造[1,1],[1,2,1],[1,3,3,1]
List<Integer> ret = new ArrayList<Integer>();
ret.add(1);//the first element
for (int i = 1; i <= rowIndex; i++) {
for (int j = i - 1; j >= 1; j--) {
int tmp = ret.get(j - 1) + ret.get(j);
ret.set(j, tmp);
}
ret.add(1);//the last element
}
return ret; }
}
 

数字规律:Pascal‘s triangle的更多相关文章

  1. ZOJ-Little Sub and Pascal's Triangle(思维规律)

    Little Sub is about to take a math exam at school. As he is very confident, he believes there is no ...

  2. 【leetcode】Pascal's Triangle I & II (middle)

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  3. 【Leetcode】【Easy】Pascal's Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  4. LeetCode(118) Pascal's Triangle

    题目 Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, R ...

  5. [LeetCode] Pascal's Triangle II 杨辉三角之二

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3,Return [1,3, ...

  6. [LeetCode] Pascal's Triangle 杨辉三角

    Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...

  7. 118. Pascal's Triangle

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, ...

  8. [LeetCode]题解(python):118 Pascal's Triangle

    题目来源 https://leetcode.com/problems/pascals-triangle/ Given numRows, generate the first numRows of Pa ...

  9. [LeetCode 118] - 杨辉三角形(Pascal's Triangle)

    问题 给出变量numRows,生成杨辉三角形的前numRows行. 例如,给出numRows=5,返回: [     [1],    [1,1],   [1,2,1],  [1,3,3,1], [1, ...

随机推荐

  1. android viewpager 深究

    参考: http://blog.csdn.net/xushuaic/article/details/42638311 GitHub上相关的ViewPager动画的项目 https://github.c ...

  2. php报错 Call to undefined function mb_stripos()

    错误原因 没有mbstring扩展 本文只介绍Linux解决办法 方法一 编译PHP的时候 带上--enable-mbstring参数 方法二 进入PHP源码/ext/mbstring目录 ./con ...

  3. opentsdb

    http://blog.javachen.com/2014/01/22/all-things-opentsdb.html http://blog.csdn.net/bingjie1217/articl ...

  4. vm选项大全

    http://hllvm.group.iteye.com/group/topic/27945 java -XX:后边的总记不住 vm选项大全 http://www.oracle.com/technet ...

  5. Envelope几何对象 Curve对象几何对象 Multipatch几何对象 Geometry集合接口 IGeometryCollection接口

    Envelope是所有几何对象的外接矩形,用于表示几何对象的最小边框,所有的几何对象都有一个Envelope对象,IEnvelope是Envelope对象的主要接口,通过它可以获取几何对象的XMax, ...

  6. Segment,Path,Ring和Polyline对象

    Segment几何对象   Segment对象是一个有起点和终点的“线“,也就是说Segement只有两个点,至于两点之间的线是直的,还是曲的,需要其余的参数定义.所以Segment是由起点,终点和参 ...

  7. PHP 命名空间以及自动加载(自动调用的函数,来include文件)

    这篇文章的目的是记录 1. php中的自动加载函数 __autoload(), 和 spl_autoload_register()函数, 2 .php中命名空间的使用. 一.当不使用命名空间的时候 a ...

  8. 转 windows 下 Oracle 导出表结构

      分析Oracle下导出某用户所有表的方法 可能很多使用Oracle的客户都会遇到想把某用户所有表导出的情况,本文就提供这样一个方法帮你轻松解决这个问题. 首先在sqlplus下以该用户登录到Ora ...

  9. Copy-->Mutable Copy

    一.深拷贝和浅拷贝 深拷贝:对象拷贝 - 直接拷贝内容. 浅拷贝:指针拷贝 - 将指针中的地址值拷贝一份. 二.对于 Copy 与 mutableCopy 的实践 思路:我用四个方案来验证 Copy ...

  10. java日期格式大全 format SimpleDateFormat(转)

    java日期格式大全 format SimpleDateFormat   /**    * 字符串转换为java.util.Date<br>    * 支持格式为 yyyy.MM.dd G ...