DFA最小化 -- Hopcroft算法 Python实现
wiki 伪代码看上去一直以为怪。发现葡萄牙语和俄罗斯语那里的 if 推断都还缺少一个条件。
国内的资料比較少。这几份学习资料不错。比我稀里糊涂的思路要好,分享下:
http://www.liafa.univ-paris-diderot.fr/~carton/Enseignement/Complexite/
ENS/Redaction/2008-2009/yingjie.xu.pdf
http://www8.cs.umu.se/kurser/TDBC92/VT06/final/1.pdf
http://arxiv.org/pdf/1010.5318.pdf
对于一个确定型自己主动机 D = (Q, Σ, δ, q0, F)。Q 的一系列恒等关系 ρi (i ≥ 0) 被定义为:
ρ0 = {(p, q)|p, q ∈ F} ∪ {(p, q)|p, q ∈ Q − F},
ρi+1 = {(p, q) ∈ ρi|(∀a ∈ Σ)(δ(p, a), δ(q, a)) ∈ ρi}.
ρi有例如以下关系:
ρ0 ⊇ ρ1 ⊇ · · · .
若 ρi = ρi+1 则对于 ρi = ρj (j > i).
存在 0 ≤ k ≤ |Q| 满足 ρk = ρk+1.
对于 ρi ≠ ρi+1,存在下面性质Equation 1:
ρi ≠ ρi+1 ⇔ (∃p, q ∈ Q, a ∈ Σ) (p, q) ∈ ρi and (δ(p, a), δ(q, a)) ∉ ρi
⇔ (∃U ∈ Q/ρi , a ∈ Σ) p, q ∈ U and (δ(p, a), δ(q, a)) ∉ ρi
⇔ (∃U, V ∈ Q/ρi , a ∈ Σ) p, q ∈ U and δ(p, a) ∈ V and δ(q, a) ∉ V
⇔ (∃U, V ∈ Q/ρi , a ∈ Σ) δ(U, a) ∩ V ≠ ∅ and δ(U, a) ∉ V
算法抽象:
1: Q/θ ← {F, Q − F}
2: while (∃U, V ∈ Q/θ, a ∈ Σ) s.t. Equation 1 holds do
3: Q/θ ← (Q/θ − {U}) ∪ {U ∩ δ^-1(V, a), U − U ∩ δ^-1(V, a)}
4: end while
算法细化:
1:W ← {F, Q − F} # 有些版本号上仅仅是 W ← {F }
2: P ← {F, Q − F}
3: while W is not empty do
4: select and remove S from W
5: for all a ∈ Σ do
6: la ← δ^-1(S, a)
7: for all R in P such that R ∩ la ≠ ∅ and R ∉ la do
8: partition R into R1 and R2: R1 ← R ∩ la and R2 ← R − R1
9: replace R in P with R1 and R2
10: if R ∈ W then
11: replace R in W with R1 and R2
12: else
13: if |R1| ≤ |R2| then
14: add R1 to W
15: else
16: add R2 to W
17: end if
18: end if
19: end for
20: end for
21: end while
复杂度:
O(n log n)
另一个优化的代码:
1: P = {F, Q − F}
2: for all a ∈ A do
3: Add((min(F, Q − F), a), S)
4: while S ≠ ∅ do
5: get (C, a) from S (we extract (C, a) according to the
strategy associated with S: FIFO/LIFO/...)
6: for each B ∈ P split by (C, a) do
7: B′, B′′ are the sets resulting from splitting of B w.r.t. (C, a)
8: Replace B in P with both B′ and B′′
9: for all b ∈ A do
10: if (B, b) ∈ S then
11: Replace (B, b) by (B′, b) and (B′′, b) in S
12: else
13: Add((min(B′,B′′), b), S)
找出无用状态:
state_graph1 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E' ],
'initial_states': [ 'A' ],
'termination_states': [ 'D' ],
'state_transition_map': {
'A': { 'a': 'B', 'b': 'C' },
'B': { 'a': 'B', 'b': 'D' },
'C': { 'a': 'B' },
'E': { 'a': 'E', 'b': 'E', },
'D': { 'a': 'B' },
},
'cins': [ 'a', 'b' ],
}
def get_unreachable_states( G ):
reachable_states = set( G['initial_states'] )
new_states = set( G['initial_states'] )
total_states = set( G['total_states'] )
cins = G['cins']
state_transition_map = G['state_transition_map']
while True:
temp_set = set()
for state in new_states:
for char in cins:
try:
next_state = state_transition_map[state][char]
temp_set.update( next_state )
except KeyError:
pass
new_states = temp_set - reachable_states
reachable_states.update( temp_set )
if new_states == set():
break
unreachable_states = total_states - reachable_states
return unreachable_states
print get_unreachable_states( state_graph1 )
Hopcroft:
import random
from copy import deepcopy state_graph1 = {
'total_states': [ '1', '2', '3', '4', '5', '6', '7' ],
'initial_states': [ '1' ],
'termination_states': [ '6', '7' ],
'state_transition_map': {
'1': { 'a': '3', 'b': '2' },
'2': { 'a': '4', 'b': '2' },
'3': { 'c': '3', 'b': '6', 'd': '5' },
'4': { 'b': '7', 'd': '5', 'c': '3' },
'5': { 'a': '4' },
'6': { 'b': '6' },
'7': { 'b': '6' },
},
'cins': [ 'a', 'b', 'c', 'd' ],
} state_graph2 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E', 'F', 'S' ],
'initial_states': [ 'A' ],
'termination_states': [ 'C', 'D', 'E', 'F' ],
'state_transition_map': {
'S': { 'a': 'A', 'b': 'B' },
'A': { 'a': 'C', 'b': 'B' },
'B': { 'a': 'A', 'b': 'D' },
'C': { 'a': 'C', 'b': 'E' },
'D': { 'a': 'F', 'b': 'D' },
'E': { 'a': 'F', 'b': 'D' },
'F': { 'a': 'C', 'b': 'E' },
},
'cins': [ 'a', 'b' ],
} state_graph3 = {
'total_states': [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H' ],
'initial_states': [ 'A' ],
'termination_states': [ 'C' ],
'state_transition_map': {
'A': { '0': 'B', '1': 'F' },
'B': { '0': 'G', '1': 'C' },
'C': { '0': 'A', '1': 'C' },
'D': { '0': 'C', '1': 'G' },
'E': { '0': 'H', '1': 'F' },
'F': { '0': 'C', '1': 'G' },
'G': { '0': 'G', '1': 'E' },
'H': { '0': 'G', '1': 'C' }
},
'cins': [ '0', '1' ],
} def hopcroft_algorithm( G ):
cins = set( G['cins'] )
termination_states = set( G['termination_states'] )
total_states = set( G['total_states'] )
state_transition_map = G['state_transition_map']
not_termination_states = total_states - termination_states def get_source_set( target_set, char ):
source_set = set()
for state in total_states:
try:
if state_transition_map[state][char] in target_set:
source_set.update( state )
except KeyError:
pass
return source_set P = [ termination_states, not_termination_states ]
W = [ termination_states, not_termination_states ] while W: A = random.choice( W )
W.remove( A ) for char in cins:
X = get_source_set( A, char )
P_temp = [] for Y in P:
S = X & Y
S1 = Y - X if len( S ) and len( S1 ):
P_temp.append( S )
P_temp.append( S1 ) if Y in W:
W.remove( Y )
W.append( S )
W.append( S1 )
else:
if len( S ) <= len( S1 ):
W.append( S )
else:
W.append( S1 )
else:
P_temp.append( Y )
P = deepcopy( P_temp )
return P print hopcroft_algorithm( state_graph1 )
print hopcroft_algorithm( state_graph2 )
print hopcroft_algorithm( state_graph3 )
岛津义弘:
“真田幸村,这片 ‘ 战国 ’ 的土地上有太多的冷漠和争斗。
一个人想要在这种 ‘ 乱世 ’ 中心存温和。他前进的道路定然会非常痛苦,
可是最后能走到 ‘ 武 ’ 之巅峰的人,却往往又都是那样内心温和的人。
由于这份温和可以让人变得非常强壮。
希望你即便面对的是你的敌人,挥舞自己的 ‘ 双枪 ’ 时,也不要失去这份温和。”
版权声明:本文博客原创文章,博客,未经同意,不得转载。
DFA最小化 -- Hopcroft算法 Python实现的更多相关文章
- DFA 最小化
NDFA.εNDFA 确定化的细节这里就不总结了,这里说一说DFA最小化的算法. 关于DFA最小化,
- dfa最小化,修正了上个版本的一些错误。
上个版本测试的时候,只用了两个非常简单的测试用例,所以好多情况有问题却没有测试出来 bug1:在生成diff_matrix的时候,循环变量少循环了一次,导致最后一个节点在如果无法与其他点合并的情况下, ...
- 编译原理中DFA最小化
关于编译原理最小化的操作,专业术语请移步至:http://www.360doc.com/content/18/0601/21/11962419_758841916.shtml 这里只是记录一下个人的理 ...
- 第九次作业——DFA最小化,语法分析初步
老师:MissDu 提交作业 1.将DFA最小化:教材P65 第9题 答: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 3.自上而下语法分析,回溯产生的原因是 ...
- DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 语言:(01 | 10)*(01 | 10) 自动机图: DFA状态转换矩阵 ...
- 编译原理之DFA最小化,语法分析初步
1.将DFA最小化: 状态转换图: 识别语言:b*ac*(da)*bb* 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 (1)正规式: S -> 0(1S+ ...
- 第九次作业 DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 Ⅰ {1,2,3,4,5} {6,7} {1,2}b={1,2,3,4,5} 3,4}b={5} {6,7} Ⅱ {1,2}{3,4}{5} {6,7} 2.构 ...
- 作业九——DFA最小化
1.将DFA最小化:教材P65 第9题 I {1, 2, 3, 4, 5} {6, 7} {1, 2}b->{1, 2, 3, 4, 5} {3, 4}b->{6, 7} {5}b-> ...
- 编译原理:DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 解析: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 解析: S→ 0A|1B →S → 0(1S|1)|1(0S|0 ...
随机推荐
- 打工心态废掉了很多人,包括你吗?(你把现在这家公司的业务都弄清楚、弄懂了吗?君子报仇十年不晚!不离不弃!)good
我只拿这点钱,凭什么去做那么多工作,我傻呀. 我为公司干活,公司付我一份报酬,等价交换而已,我不欠谁的. 我只要对得起这份薪水就行了,多一点我都不干,做了也白做. 工作嘛,又不是为自己干,说得过去就行 ...
- 简单实用的下拉菜单(CSS+jquery)
原文 简单实用的下拉菜单(CSS+jquery) 没什么可以说的,直接上例子 html+jquery代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTM ...
- Hadoop 2.x(YARN)安装配置LZO
今天尝试在Hadoop 2.x(YARN)上安装和配置LZO,遇到了很多坑,网上的资料都是基于Hadoop 1.x的,基本没有对于Hadoop 2.x上应用LZO,我在这边记录整个安装配置过程 1. ...
- 调用opencv打开不摄像头
调用opencv打开不摄像头,可以试试下面的语句: CvCapture* pCapture = cvCreateCameraCapture(0); 参数设为0 ,而不是-1,在自己电脑上可以 .
- jQuery 简单滑动轮播图效果
一般页面简单轮播图效果用jQuery制作更加简单.我们来看看以下效果是如何来进行制作的. 其html结构下所示: <div id="box"> < ...
- m2eclipse简单使用,创建Maven项目 ,运行mvn命令(转)
前面介绍了如何安装m2eclipse,现在,我们使用m2ecilpse导入Hello World项目. 选择菜单项File,然后选择Import,我们会看到一个Import对话框,在该对话框中选择Ge ...
- c语言实现atoi和itoa函数。
首先看atoi函数: C语言库函数名: atoi 功 能: 把字符串转换成整型数. 名字来源:ASCII to integer 的缩写. 原型: int atoi(const char *nptr); ...
- Unity3d 帧率设置 及在游戏执行时显示帧率
在Unity3d 中能够通过代码设置 来限定游戏帧率. Application.targetFrameRate=-1; 设置为 -1 表示不限定帧率. 转自http://blog.csdn.net/h ...
- 深入理解 Spring 事务原理【转】
本文转自码农网 – 吴极心原创 连接地址:http://www.codeceo.com/article/spring-transactions.html 一.事务的基本原理 Spring事务的本质其 ...
- const对象默认是static的,而不是extern的
const 和 static 变量,可以放在头文件中 const对象默认是static的,而不是extern的,所以即使放在头文件中声明和定义.多个cpp引用同一个头文件,互相也没有感知,所以不会导致 ...