P1680 奇怪的分组(组合数+逆元)
首先将n减去所有的Ci,于是是原问题转换为:n个相同的球放入m个不同盒子里,不能为空,求方案数.
根据插空法:n个球,放到m个箱子里去不能为空,也就是有m-1块板子放在n-1个空隙之间
那么组合数求解也就是C(n-1,m-1)
除法求余有误差所以先求分母的逆元,转化为分子*逆元%mod的形式
在模为素数p的情况下,有费马小定理
a^(p-1)=1(mod p)
那么a^(p-2)=a^-1(mod p)
也就是说a的逆元为a^(p-2)
那么快速幂一下求逆元就好了。
#include <bits/stdc++.h>
using namespace std;
const int mod=1000000007;
const int maxn=1000009;
typedef long long ll;
int n,m;
ll fc[maxn+10];
ll quickpow(ll a,ll n)
{
ll ans=1;
while(n)
{
if(n&1) ans=ans*a%mod;
a=a*a%mod;
n>>=1;
}
return ans;
}
ll C(int n,int k)
{
ll fm=fc[k]*fc[n-k]%mod;//求b的逆元
//因为a/b%mod,除法取模会出现问题,所以要求逆元
return fc[n]*quickpow(fm,mod-2)%mod;
}
int main()
{
fc[0]=1;
for(int i=1;i<=maxn;i++)
fc[i]=fc[i-1]*i%mod;
cin>>n>>m;
for(int i=1;i<=m;i++)
{
ll l;cin>>l;
n-=l;
}
//n个苹果,放到m个箱子里去不能为空
//也就是有m-1块板子放在n-1个空隙之间
cout<<C(n-1,m-1);
}
P1680 奇怪的分组(组合数+逆元)的更多相关文章
- 洛谷——P1680 奇怪的分组
P1680 奇怪的分组 题目背景 终于解出了dm同学的难题,dm同学同意帮v神联络.可dm同学有个习惯,就是联络同学的时候喜欢分组联络,而且分组的方式也很特别,要求第i组的的人数必须大于他指定的个数c ...
- LUOGU P1680 奇怪的分组
题目背景 终于解出了dm同学的难题,dm同学同意帮v神联络.可dm同学有个习惯,就是联络同学的时候喜欢分组联络,而且分组的方式也很特别,要求第i组的的人数必须大于他指定的个数ci.在dm同学联络的时候 ...
- 洛谷—— P1680 奇怪的分组
https://www.luogu.org/problemnew/show/1680 题目背景 终于解出了dm同学的难题,dm同学同意帮v神联络.可dm同学有个习惯,就是联络同学的时候喜欢分组联络,而 ...
- NOIP2011多项式系数[快速幂|组合数|逆元]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 2016 ACM/ICPC Asia Regional Shenyang Online 1003/HDU 5894 数学/组合数/逆元
hannnnah_j’s Biological Test Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K ...
- Gym - 101775A Chat Group 组合数+逆元+快速幂
It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...
- HDU 6044--Limited Permutation(搜索+组合数+逆元)
题目链接 Problem Description As to a permutation p1,p2,⋯,pn from 1 to n, it is uncomplicated for each 1≤ ...
- 牛客练习赛17 C 操作数(组合数+逆元)
给定长度为n的数组a,定义一次操作为: 1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007: 2. 执行a = s: 现在 ...
- Problem B. Harvest of Apples(杭电2018年多校+组合数+逆元+莫队)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6333 题目: 题意:求C(n,0)+C(n,1)+……+C(n,m)的值. 思路:由于t和n数值范围太 ...
随机推荐
- floyd三重循环最外层为什么一定是K
Floyd算法为什么把k放在最外层? - 知乎 https://www.zhihu.com/question/30955032高票答案: 简单地总结一下:K没放在最外面一定是错的,但是在某些数据比较水 ...
- http的请求头都有那些信息
每个HTTP请求和响应都会带有相应的头部信息.默认情况下,在发送XHR请求的同时,还会发送下列头部信息: Accept:浏览器能够处理的内容类型 Accept-Charset:浏览器能够显示的字符集 ...
- std::lock_guard和std::unique_lock的区别
std::lock_guard 1 初始化的时候锁定std::mutex std::mutex m_mtx; std::lock_guard<std::mutex> m_lock(m_mt ...
- docker 安装vim和yum命令
apt-get updateapt-get install vim -yapt-get install yum -y
- Python 中如何查看进行反汇编
dis模块 Python 反汇编是通过 dis 这个模块来查看的,一般有两种方式可以用来查看 方式一: 在命令行中使用 dis 查看 >>> def test ...
- 如何配置多个Spring的xml配置文件(多模块配置)
如何使用多个Spring的xml配置文件(多模块配置) (2009-08-22 13:42:43) 如何使用多个Spring的xml配置文件(多模块配置) 在用Struts Spring Hibe ...
- 【python实现卷积神经网络】激活层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...
- SaaS、PaaS、IaaS的含义与区别
先上个图,直观的了解一下 云计算有SPI,即SaaS.PaaS和IaaS三大服务模式. PaaS和IaaS源于SaaS SaaS Software as a Service 软件即服务,提供给客户的服 ...
- 怎么在执行Python脚本时,密码等敏感信息也不让它出现
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...
- F - Pearls HDU - 1300
简单dp. 题目大意:有n种珍珠,这n种珍珠有不同的需求量,不同的价格,价格越高,质量越高,在购买每一种珍珠时,都需要在原来的基础上多买10个.也就是说如果需要买x种珍珠,那就要付x+10个的钱.每一 ...