Coursera课程笔记----P4E.Capstone----Week 2&3
Building a Search Engine(week 2&3)
Search Engine Architecture
Web Crawling
Index Building
Searching
Web Crawler
A Web crawler is a computer program that browses the World Wide Web in a methodical, automated manner. Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search engine that will index the downloaded pages to provide fast searches.
steps
- Retrieve a page
- Look through the page for links
- Add the links to a list of "to be retrieved" sites
- repeat...
policy
- selection policy that states which page to download
- re-visit policy that states when to.check for changes to the pages
- politeness policy that states how to avoid overloading Web sites
- parallelization policy that states how to coordinate distributed Web crawlers
robots.txt
A way for a web site to communicate with web crawlers
An informal and voluntary standard
It tells the crawler where to look and where not to look
Search Indexing
Search engine indexing collects, parses, and stores data to facilitate fast and accurate information retrieval. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power.
code segment
spider.py
import sqlite3
import urllib.error
import ssl
from urllib.parse import urljoin
from urllib.parse import urlparse
from urllib.request import urlopen
from bs4 import BeautifulSoup
# Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
# Link to sqlite
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Create new tables
cur.execute('''CREATE TABLE IF NOT EXISTS Pages
(id INTEGER PRIMARY KEY, url TEXT UNIQUE, html TEXT,
error INTEGER, old_rank REAL, new_rank REAL)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Links
(from_id INTEGER, to_id INTEGER)''')
#This table store only one url which is processing
cur.execute('''CREATE TABLE IF NOT EXISTS Webs (url TEXT UNIQUE)''')
# Check to see if we are already in progress...
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
row = cur.fetchone()
if row is not None:
print("Restarting existing crawl. Remove spider.sqlite to start a fresh crawl.")
else :
starturl = input('Enter web url or enter: ')
if ( len(starturl) < 1 ) : starturl = 'http://www.dr-chuck.com/'
# delete the "/"
if ( starturl.endswith('/') ) : starturl = starturl[:-1]
web = starturl
if ( starturl.endswith('.htm') or starturl.endswith('.html') ) :
pos = starturl.rfind('/')
web = starturl[:pos]
if ( len(web) > 1 ) :
cur.execute('INSERT OR IGNORE INTO Webs (url) VALUES ( ? )', ( web, ) )
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( starturl, ) )
conn.commit()
# Get the current webs
cur.execute('''SELECT url FROM Webs''')
webs = list()
for row in cur:
webs.append(str(row[0]))
print(webs)
many = 0
while True:
if ( many < 1 ) :
sval = input('How many pages:')
if ( len(sval) < 1 ) : break
many = int(sval)
many = many - 1
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
try:
row = cur.fetchone()
# print row
fromid = row[0]
url = row[1]
except:
print('No unretrieved HTML pages found')
many = 0
break
print(fromid, url, end=' ')
# If we are retrieving this page, there should be no links from it
cur.execute('DELETE from Links WHERE from_id=?', (fromid, ) )
try:
document = urlopen(url, context=ctx)
html = document.read()
if document.getcode() != 200 :
print("Error on page: ",document.getcode())
cur.execute('UPDATE Pages SET error=? WHERE url=?', (document.getcode(), url) )
if 'text/html' != document.info().get_content_type() :
print("Ignore non text/html page")
cur.execute('DELETE FROM Pages WHERE url=?', ( url, ) )
conn.commit()
continue
print('('+str(len(html))+')', end=' ')
soup = BeautifulSoup(html, "html.parser")
except KeyboardInterrupt:
print('')
print('Program interrupted by user...')
break
except:
print("Unable to retrieve or parse page")
cur.execute('UPDATE Pages SET error=-1 WHERE url=?', (url, ) )
conn.commit()
continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( url, ) )
cur.execute('UPDATE Pages SET html=? WHERE url=?', (memoryview(html), url ) )
conn.commit()
# Retrieve all of the anchor tags
tags = soup('a')
count = 0
for tag in tags:
href = tag.get('href', None)
if ( href is None ) : continue
# Resolve relative references like href="/contact"
up = urlparse(href)
if ( len(up.scheme) < 1 ) :
href = urljoin(url, href)
ipos = href.find('#')
if ( ipos > 1 ) : href = href[:ipos]
if ( href.endswith('.png') or href.endswith('.jpg') or href.endswith('.gif') ) : continue
if ( href.endswith('/') ) : href = href[:-1]
# print href
if ( len(href) < 1 ) : continue
# Check if the URL is in any of the webs
found = False
for web in webs:
if ( href.startswith(web) ) :
found = True
break
if not found : continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( href, ) )
count = count + 1
conn.commit()
cur.execute('SELECT id FROM Pages WHERE url=? LIMIT 1', ( href, ))
try:
row = cur.fetchone()
toid = row[0]
except:
print('Could not retrieve id')
continue
# print fromid, toid
cur.execute('INSERT OR IGNORE INTO Links (from_id, to_id) VALUES ( ?, ? )', ( fromid, toid ) )
print(count)
cur.close()
sprank.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Find the ids that send out page rank - we only are interested
# in pages in the SCC that have in and out links
cur.execute('''SELECT DISTINCT from_id FROM Links''')
from_ids = list()
for row in cur:
from_ids.append(row[0])
# Find the ids that receive page rank
to_ids = list()
links = list()
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
for row in cur:
from_id = row[0]
to_id = row[1]
if from_id == to_id : continue
if from_id not in from_ids : continue
if to_id not in from_ids : continue
links.append(row)
if to_id not in to_ids : to_ids.append(to_id)
# Get latest page ranks for strongly connected component
prev_ranks = dict()
for node in from_ids:
cur.execute('''SELECT new_rank FROM Pages WHERE id = ?''', (node, ))
row = cur.fetchone()
prev_ranks[node] = row[0]
sval = input('How many iterations:')
many = 1
if ( len(sval) > 0 ) : many = int(sval)
# Sanity check
if len(prev_ranks) < 1 :
print("Nothing to page rank. Check data.")
quit()
# Lets do Page Rank in memory so it is really fast
for i in range(many):
# print prev_ranks.items()[:5]
next_ranks = dict();
total = 0.0
for (node, old_rank) in list(prev_ranks.items()):
total = total + old_rank
next_ranks[node] = 0.0
# print total
# Find the number of outbound links and sent the page rank down each
for (node, old_rank) in list(prev_ranks.items()):
# print node, old_rank
give_ids = list()
for (from_id, to_id) in links:
if from_id != node : continue
# print ' ',from_id,to_id
if to_id not in to_ids: continue
give_ids.append(to_id)
if ( len(give_ids) < 1 ) : continue
amount = old_rank / len(give_ids)
# print node, old_rank,amount, give_ids
for id in give_ids:
next_ranks[id] = next_ranks[id] + amount
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
evap = (total - newtot) / len(next_ranks)
# print newtot, evap
for node in next_ranks:
next_ranks[node] = next_ranks[node] + evap
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
# Compute the per-page average change from old rank to new rank
# As indication of convergence of the algorithm
totdiff = 0
for (node, old_rank) in list(prev_ranks.items()):
new_rank = next_ranks[node]
diff = abs(old_rank-new_rank)
totdiff = totdiff + diff
avediff = totdiff / len(prev_ranks)
print(i+1, avediff)
# rotate
prev_ranks = next_ranks
# Put the final ranks back into the database
print(list(next_ranks.items())[:5])
cur.execute('''UPDATE Pages SET old_rank=new_rank''')
for (id, new_rank) in list(next_ranks.items()) :
cur.execute('''UPDATE Pages SET new_rank=? WHERE id=?''', (new_rank, id))
conn.commit()
cur.close()
spdump.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL
GROUP BY id ORDER BY inbound DESC''')
count = 0
for row in cur :
if count < 50 : print(row)
count = count + 1
print(count, 'rows.')
cur.close()
spjson.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
print("Creating JSON output on spider.js...")
howmany = int(input("How many nodes? "))
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL AND ERROR IS NULL
GROUP BY id ORDER BY id,inbound''')
fhand = open('spider.js','w')
nodes = list()
maxrank = None
minrank = None
for row in cur :
nodes.append(row)
rank = row[2]
if maxrank is None or maxrank < rank: maxrank = rank
if minrank is None or minrank > rank : minrank = rank
if len(nodes) > howmany : break
if maxrank == minrank or maxrank is None or minrank is None:
print("Error - please run sprank.py to compute page rank")
quit()
fhand.write('spiderJson = {"nodes":[\n')
count = 0
map = dict()
ranks = dict()
for row in nodes :
if count > 0 : fhand.write(',\n')
# print row
rank = row[2]
rank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{'+'"weight":'+str(row[0])+',"rank":'+str(rank)+',')
fhand.write(' "id":'+str(row[3])+', "url":"'+row[4]+'"}')
map[row[3]] = count
ranks[row[3]] = rank
count = count + 1
fhand.write('],\n')
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
fhand.write('"links":[\n')
count = 0
for row in cur :
# print row
if row[0] not in map or row[1] not in map : continue
if count > 0 : fhand.write(',\n')
rank = ranks[row[0]]
srank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{"source":'+str(map[row[0]])+',"target":'+str(map[row[1]])+',"value":3}')
count = count + 1
fhand.write(']};')
fhand.close()
cur.close()
print("Open force.html in a browser to view the visualization")
Coursera课程笔记----P4E.Capstone----Week 2&3的更多相关文章
- Coursera课程笔记----P4E.Capstone----Week 6&7
Visualizing Email Data(Week 6&7) code segment gword.py import sqlite3 import time import zlib im ...
- Coursera课程笔记----P4E.Capstone----Week 4&5
Spidering and Modeling Email Data(week4&5) Mailing List - Gmane Crawl the archive of a mailing l ...
- 操作系统学习笔记----进程/线程模型----Coursera课程笔记
操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...
- Coursera课程笔记----C++程序设计----Week3
类和对象(Week 3) 内联成员函数和重载成员函数 内联成员函数 inline + 成员函数 整个函数题出现在类定义内部 class B{ inline void func1(); //方式1 vo ...
- Coursera课程笔记----Write Professional Emails in English----Week 3
Introduction and Announcement Emails (Week 3) Overview of Introduction & Announcement Emails Bas ...
- Coursera课程笔记----Write Professional Emails in English----Week 1
Get to Know Basic Email Writing Structures(Week 1) Introduction to Course Email and Editing Basics S ...
- Coursera课程笔记----C程序设计进阶----Week 5
指针(二) (Week 5) 字符串与指针 指向数组的指针 int a[10]; int *p; p = a; 指向字符串的指针 指向字符串的指针变量 char a[10]; char *p; p = ...
- Coursera课程笔记----Write Professional Emails in English----Week 5
Culture Matters(Week 5) High/Low Context Communication High Context Communication The Middle East, A ...
- Coursera课程笔记----Write Professional Emails in English----Week 4
Request and Apology Emails(Week 4) How to Write Request Emails Write more POLITELY & SINCERELUY ...
随机推荐
- 史上最详细的VM虚拟机安装Kali-linux教程(以2020.1版本为例,含下载地址+默认提升为root权限)
一.官方下载 Kali Linux 官方网址:www.Kali.org下载方式分两种:http 下载和 bt 下载(由于是国外网站 http 方式下载会非常慢),选择对应版本点击即可下载. 二.创建新 ...
- 零基础的学习者应该怎么开始学习呢?Python核心知识学习思维分享
近几年,Python一路高歌猛进,成为最受欢迎的编程语言之一,受到无数编程工作者的青睐. 据悉,Python已经入驻部分小学生教材,可以预见学习Python将成为一项提高自身职业竞争力的必修课.那么零 ...
- Flair:一款简单但技术先进的NLP库
过去的几年里,在NLP(自然语言处理)领域,我们已经见证了多项令人难以置信的突破,如ULMFiT.ELMo.Facebook的PyText以及谷歌的BERT等等. 这些技术大大推进了NLP的前沿性研究 ...
- HBase Filter 过滤器之 Comparator 原理及源码学习
前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...
- ubuntu安装Python3并与Python2自由切换
一.配置ssh链接安装openssh-server sudo apt-get install openssh-server 二.安装Python3及pip sudo apt-get install p ...
- git、gitLab、github区别
git是一种版本控制系统,是一个命令.一种工具 gitlib是用于实现git功能的开发库 github是一个基于git实现的在线代码仓库,是一个网站,支持几乎所有git操作,可用于托管代码 gitla ...
- Mac home 目录下创建文件夹
example:sudo vim /etc/auto_master before: # Automounter master map +auto_master # Use directory serv ...
- Docker简单操作(二)
1.docker容器简单操作 docker search 镜像名 #搜索镜像.如docker search nginx docker pull alpine #拉取镜像.alpine是比较小的镜像 d ...
- POJ3460 Booksort
飞来山上千寻塔,闻说鸡鸣见日升. 不畏浮云遮望眼,自缘身在最高层.--王安石 题目:Booksort 网址:http://poj.org/problem?id=3460 Description The ...
- numpy库的学习笔记
一.ndarray 1.numpy 库处理的最基础数据类型是由同种元素构成的多维数组(ndarray),简称“数组”. 2.ndarray是一个多维数组的对象,ndarray数组一般要求所有元素类型相 ...