Coursera课程笔记----P4E.Capstone----Week 2&3
Building a Search Engine(week 2&3)
Search Engine Architecture
Web Crawling
Index Building
Searching
Web Crawler
A Web crawler is a computer program that browses the World Wide Web in a methodical, automated manner. Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search engine that will index the downloaded pages to provide fast searches.
steps
- Retrieve a page
- Look through the page for links
- Add the links to a list of "to be retrieved" sites
- repeat...
policy
- selection policy that states which page to download
- re-visit policy that states when to.check for changes to the pages
- politeness policy that states how to avoid overloading Web sites
- parallelization policy that states how to coordinate distributed Web crawlers
robots.txt
A way for a web site to communicate with web crawlers
An informal and voluntary standard
It tells the crawler where to look and where not to look
Search Indexing
Search engine indexing collects, parses, and stores data to facilitate fast and accurate information retrieval. The purpose of storing an index is to optimize speed and performance in finding relevant documents for a search query. Without an index, the search engine would scan every document in the corpus, which would require considerable time and computing power.
code segment
spider.py
import sqlite3
import urllib.error
import ssl
from urllib.parse import urljoin
from urllib.parse import urlparse
from urllib.request import urlopen
from bs4 import BeautifulSoup
# Ignore SSL certificate errors
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
# Link to sqlite
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Create new tables
cur.execute('''CREATE TABLE IF NOT EXISTS Pages
(id INTEGER PRIMARY KEY, url TEXT UNIQUE, html TEXT,
error INTEGER, old_rank REAL, new_rank REAL)''')
cur.execute('''CREATE TABLE IF NOT EXISTS Links
(from_id INTEGER, to_id INTEGER)''')
#This table store only one url which is processing
cur.execute('''CREATE TABLE IF NOT EXISTS Webs (url TEXT UNIQUE)''')
# Check to see if we are already in progress...
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
row = cur.fetchone()
if row is not None:
print("Restarting existing crawl. Remove spider.sqlite to start a fresh crawl.")
else :
starturl = input('Enter web url or enter: ')
if ( len(starturl) < 1 ) : starturl = 'http://www.dr-chuck.com/'
# delete the "/"
if ( starturl.endswith('/') ) : starturl = starturl[:-1]
web = starturl
if ( starturl.endswith('.htm') or starturl.endswith('.html') ) :
pos = starturl.rfind('/')
web = starturl[:pos]
if ( len(web) > 1 ) :
cur.execute('INSERT OR IGNORE INTO Webs (url) VALUES ( ? )', ( web, ) )
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( starturl, ) )
conn.commit()
# Get the current webs
cur.execute('''SELECT url FROM Webs''')
webs = list()
for row in cur:
webs.append(str(row[0]))
print(webs)
many = 0
while True:
if ( many < 1 ) :
sval = input('How many pages:')
if ( len(sval) < 1 ) : break
many = int(sval)
many = many - 1
cur.execute('SELECT id,url FROM Pages WHERE html is NULL and error is NULL ORDER BY RANDOM() LIMIT 1')
try:
row = cur.fetchone()
# print row
fromid = row[0]
url = row[1]
except:
print('No unretrieved HTML pages found')
many = 0
break
print(fromid, url, end=' ')
# If we are retrieving this page, there should be no links from it
cur.execute('DELETE from Links WHERE from_id=?', (fromid, ) )
try:
document = urlopen(url, context=ctx)
html = document.read()
if document.getcode() != 200 :
print("Error on page: ",document.getcode())
cur.execute('UPDATE Pages SET error=? WHERE url=?', (document.getcode(), url) )
if 'text/html' != document.info().get_content_type() :
print("Ignore non text/html page")
cur.execute('DELETE FROM Pages WHERE url=?', ( url, ) )
conn.commit()
continue
print('('+str(len(html))+')', end=' ')
soup = BeautifulSoup(html, "html.parser")
except KeyboardInterrupt:
print('')
print('Program interrupted by user...')
break
except:
print("Unable to retrieve or parse page")
cur.execute('UPDATE Pages SET error=-1 WHERE url=?', (url, ) )
conn.commit()
continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( url, ) )
cur.execute('UPDATE Pages SET html=? WHERE url=?', (memoryview(html), url ) )
conn.commit()
# Retrieve all of the anchor tags
tags = soup('a')
count = 0
for tag in tags:
href = tag.get('href', None)
if ( href is None ) : continue
# Resolve relative references like href="/contact"
up = urlparse(href)
if ( len(up.scheme) < 1 ) :
href = urljoin(url, href)
ipos = href.find('#')
if ( ipos > 1 ) : href = href[:ipos]
if ( href.endswith('.png') or href.endswith('.jpg') or href.endswith('.gif') ) : continue
if ( href.endswith('/') ) : href = href[:-1]
# print href
if ( len(href) < 1 ) : continue
# Check if the URL is in any of the webs
found = False
for web in webs:
if ( href.startswith(web) ) :
found = True
break
if not found : continue
cur.execute('INSERT OR IGNORE INTO Pages (url, html, new_rank) VALUES ( ?, NULL, 1.0 )', ( href, ) )
count = count + 1
conn.commit()
cur.execute('SELECT id FROM Pages WHERE url=? LIMIT 1', ( href, ))
try:
row = cur.fetchone()
toid = row[0]
except:
print('Could not retrieve id')
continue
# print fromid, toid
cur.execute('INSERT OR IGNORE INTO Links (from_id, to_id) VALUES ( ?, ? )', ( fromid, toid ) )
print(count)
cur.close()
sprank.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
# Find the ids that send out page rank - we only are interested
# in pages in the SCC that have in and out links
cur.execute('''SELECT DISTINCT from_id FROM Links''')
from_ids = list()
for row in cur:
from_ids.append(row[0])
# Find the ids that receive page rank
to_ids = list()
links = list()
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
for row in cur:
from_id = row[0]
to_id = row[1]
if from_id == to_id : continue
if from_id not in from_ids : continue
if to_id not in from_ids : continue
links.append(row)
if to_id not in to_ids : to_ids.append(to_id)
# Get latest page ranks for strongly connected component
prev_ranks = dict()
for node in from_ids:
cur.execute('''SELECT new_rank FROM Pages WHERE id = ?''', (node, ))
row = cur.fetchone()
prev_ranks[node] = row[0]
sval = input('How many iterations:')
many = 1
if ( len(sval) > 0 ) : many = int(sval)
# Sanity check
if len(prev_ranks) < 1 :
print("Nothing to page rank. Check data.")
quit()
# Lets do Page Rank in memory so it is really fast
for i in range(many):
# print prev_ranks.items()[:5]
next_ranks = dict();
total = 0.0
for (node, old_rank) in list(prev_ranks.items()):
total = total + old_rank
next_ranks[node] = 0.0
# print total
# Find the number of outbound links and sent the page rank down each
for (node, old_rank) in list(prev_ranks.items()):
# print node, old_rank
give_ids = list()
for (from_id, to_id) in links:
if from_id != node : continue
# print ' ',from_id,to_id
if to_id not in to_ids: continue
give_ids.append(to_id)
if ( len(give_ids) < 1 ) : continue
amount = old_rank / len(give_ids)
# print node, old_rank,amount, give_ids
for id in give_ids:
next_ranks[id] = next_ranks[id] + amount
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
evap = (total - newtot) / len(next_ranks)
# print newtot, evap
for node in next_ranks:
next_ranks[node] = next_ranks[node] + evap
newtot = 0
for (node, next_rank) in list(next_ranks.items()):
newtot = newtot + next_rank
# Compute the per-page average change from old rank to new rank
# As indication of convergence of the algorithm
totdiff = 0
for (node, old_rank) in list(prev_ranks.items()):
new_rank = next_ranks[node]
diff = abs(old_rank-new_rank)
totdiff = totdiff + diff
avediff = totdiff / len(prev_ranks)
print(i+1, avediff)
# rotate
prev_ranks = next_ranks
# Put the final ranks back into the database
print(list(next_ranks.items())[:5])
cur.execute('''UPDATE Pages SET old_rank=new_rank''')
for (id, new_rank) in list(next_ranks.items()) :
cur.execute('''UPDATE Pages SET new_rank=? WHERE id=?''', (new_rank, id))
conn.commit()
cur.close()
spdump.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL
GROUP BY id ORDER BY inbound DESC''')
count = 0
for row in cur :
if count < 50 : print(row)
count = count + 1
print(count, 'rows.')
cur.close()
spjson.py
import sqlite3
conn = sqlite3.connect('spider.sqlite')
cur = conn.cursor()
print("Creating JSON output on spider.js...")
howmany = int(input("How many nodes? "))
cur.execute('''SELECT COUNT(from_id) AS inbound, old_rank, new_rank, id, url
FROM Pages JOIN Links ON Pages.id = Links.to_id
WHERE html IS NOT NULL AND ERROR IS NULL
GROUP BY id ORDER BY id,inbound''')
fhand = open('spider.js','w')
nodes = list()
maxrank = None
minrank = None
for row in cur :
nodes.append(row)
rank = row[2]
if maxrank is None or maxrank < rank: maxrank = rank
if minrank is None or minrank > rank : minrank = rank
if len(nodes) > howmany : break
if maxrank == minrank or maxrank is None or minrank is None:
print("Error - please run sprank.py to compute page rank")
quit()
fhand.write('spiderJson = {"nodes":[\n')
count = 0
map = dict()
ranks = dict()
for row in nodes :
if count > 0 : fhand.write(',\n')
# print row
rank = row[2]
rank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{'+'"weight":'+str(row[0])+',"rank":'+str(rank)+',')
fhand.write(' "id":'+str(row[3])+', "url":"'+row[4]+'"}')
map[row[3]] = count
ranks[row[3]] = rank
count = count + 1
fhand.write('],\n')
cur.execute('''SELECT DISTINCT from_id, to_id FROM Links''')
fhand.write('"links":[\n')
count = 0
for row in cur :
# print row
if row[0] not in map or row[1] not in map : continue
if count > 0 : fhand.write(',\n')
rank = ranks[row[0]]
srank = 19 * ( (rank - minrank) / (maxrank - minrank) )
fhand.write('{"source":'+str(map[row[0]])+',"target":'+str(map[row[1]])+',"value":3}')
count = count + 1
fhand.write(']};')
fhand.close()
cur.close()
print("Open force.html in a browser to view the visualization")
Coursera课程笔记----P4E.Capstone----Week 2&3的更多相关文章
- Coursera课程笔记----P4E.Capstone----Week 6&7
Visualizing Email Data(Week 6&7) code segment gword.py import sqlite3 import time import zlib im ...
- Coursera课程笔记----P4E.Capstone----Week 4&5
Spidering and Modeling Email Data(week4&5) Mailing List - Gmane Crawl the archive of a mailing l ...
- 操作系统学习笔记----进程/线程模型----Coursera课程笔记
操作系统学习笔记----进程/线程模型----Coursera课程笔记 进程/线程模型 0. 概述 0.1 进程模型 多道程序设计 进程的概念.进程控制块 进程状态及转换.进程队列 进程控制----进 ...
- Coursera课程笔记----C++程序设计----Week3
类和对象(Week 3) 内联成员函数和重载成员函数 内联成员函数 inline + 成员函数 整个函数题出现在类定义内部 class B{ inline void func1(); //方式1 vo ...
- Coursera课程笔记----Write Professional Emails in English----Week 3
Introduction and Announcement Emails (Week 3) Overview of Introduction & Announcement Emails Bas ...
- Coursera课程笔记----Write Professional Emails in English----Week 1
Get to Know Basic Email Writing Structures(Week 1) Introduction to Course Email and Editing Basics S ...
- Coursera课程笔记----C程序设计进阶----Week 5
指针(二) (Week 5) 字符串与指针 指向数组的指针 int a[10]; int *p; p = a; 指向字符串的指针 指向字符串的指针变量 char a[10]; char *p; p = ...
- Coursera课程笔记----Write Professional Emails in English----Week 5
Culture Matters(Week 5) High/Low Context Communication High Context Communication The Middle East, A ...
- Coursera课程笔记----Write Professional Emails in English----Week 4
Request and Apology Emails(Week 4) How to Write Request Emails Write more POLITELY & SINCERELUY ...
随机推荐
- python2.7安装numpy和pandas
扩展官网安装numpy,use [v][p][n]下载得会比较快 然后在CMD命令行下进入该文件夹然后输入pip install +numpy的路径+文件名.比如我的是:pip install num ...
- L1线性回归
线性回归 主要内容包括: 线性回归的基本要素 线性回归模型从零开始的实现 线性回归模型使用pytorch的简洁实现 代码下载地址 https://download.csdn.net/download/ ...
- 一文回顾Reids五大对象(数据类型)
Redis 是一个高性能的分布式内存型数据库,在国内外各大互联网公司中都有着广泛的使用,即使是一些非互联网公司中也有着非常重要的适用场景,所以对 Redis 的掌握也成为后端工程师必备的基础技能,在面 ...
- ado.net 面向对象
面向对象:就是一个大的转换器,建立起一条通道通往数据库然后通过通道将所需(方法)数据从转换器往返于外部界面端 1 首先在项目里创建文件夹: 右击项目———添加个文件夹App_Cod 2 ...
- HBase Filter 过滤器概述
abc 过滤器介绍 HBase过滤器是一套为完成一些较高级的需求所提供的API接口. 过滤器也被称为下推判断器(push-down predicates),支持把数据过滤标准从客户端下推到服务器,带有 ...
- 尝试用python开发一款图片压缩工具1:尝试 pillow库
开发目的 我经常使用图片.公众号文章发文也好,还是生活中要使用素材.图片是一种比文字更加直观的载体.但是图片更加占用带宽,很多软件都对图片有大小限制.图片太大也会影响加载速度.我试过几款图片压缩工具, ...
- api接口安全
API接口安全 在做app开发中,如何保证api的接口安全,不被其他app去调用? 接口安全的措施很多,今天记录一个常用的措施 签名: 前台想要调用接口,需要使用几个参数生成签名: 时间戳:当前时间 ...
- MySQL主从复制,主主复制,半同步复制
实验环境: 系统:CentOS Linux release 7.4.1708 (Core) mariadb:mariadb-server-5.5.56-2.el7.x86_64 node1:172.1 ...
- py安装教程
https://www.runoob.com/w3cnote/pycharm-windows-install.html
- Programmatically mount a Microsoft Virtual Hard Drive (VHD)
By Pixy https://stackoverflow.com/questions/24396644/programmatically-mount-a-microsoft-virtual-hard ...