随机抽样一致性(RANSAC)算法详解
随机抽样一致性(RANSAC)算法能够有效的剔除特征匹配中的错误匹配点。
实际上,RANSAC能够有效拟合存在噪声模型下的拟合函数。实际上,RANSAC算法的核心在于将点划分为“内点”和“外点”。在一组包含“外点”的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为“外点”。这就是RANSAC的核心思想。
RANSAC原理
OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳单应性矩阵H,矩阵大小为3×3。RANSAC目的是找到最优的参数矩阵使得满足该矩阵的数据点个数最多,通常令h33=1来归一化矩阵。由于单应性矩阵有8个未知参数,至少需要8个线性方程求解,对应到点位置信息上,一组点对可以列出两个方程,则至少包含4组匹配点对。

RANSAC算法从匹配数据集中随机抽出4个样本并保证这4个样本之间不共线,计算出单应性矩阵,然后利用这个模型测试所有数据,并计算满足这个模型数据点的个数与投影误差(即代价函数),若此模型为最优模型,则对应的代价函数最小。
损失函数:

也就是通过随机抽样求解得到一个矩阵,然后验证其他的点是否符合模型,然后符合的点成为“内点”,不符合的点成为“外点”。下次依然从“新的内点集合”中抽取点构造新的矩阵,重新计算误差。最后误差最小,点数最多就是最终的模型。
RANSAC算法步骤:
RANSAC算法步骤:
1. 随机从数据集中随机抽出4个样本数据 (此4个样本之间不能共线),计算出变换矩阵H,记为模型M;
2. 计算数据集中所有数据与模型M的投影误差,若误差小于阈值,加入内点集 I ;
3. 如果当前内点集 I 元素个数大于最优内点集 I_best , 则更新 I_best = I,同时更新迭代次数k ;
4. 如果迭代次数大于k,则退出 ; 否则迭代次数加1,并重复上述步骤;
注:迭代次数k在不大于最大迭代次数的情况下,是在不断更新而不是固定的;

其中,p为置信度,一般取0.995;w为"内点"的比例 ; m为计算模型所需要的最少样本数=4;
关于RANSAC算法的思想,可以用下图表示

也就是RANSAC算法的本质是:在存在噪声的数据中,我们求解一个模型,使得非噪声数据可以用该模型表示,而噪声数据被排除在外。
分享三个讲解RANSAC算法的网址:
https://www.csdn.net/gather_2d/MtjaMg3sNDAwNS1ibG9n.html
https://www.cnblogs.com/xrwang/archive/2011/03/09/ransac-1.html
https://blog.csdn.net/yanghan742915081/article/details/83005442
随机抽样一致性(RANSAC)算法详解的更多相关文章
- RANSAC算法详解
给定两个点p1与p2的坐标,确定这两点所构成的直线,要求对于输入的任意点p3,都可以判断它是否在该直线上.初中解析几何知识告诉我们,判断一个点在直线上,只需其与直线上任意两点点斜率都相同即可.实际操作 ...
- 一致性hash算法详解
转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT) ...
- BM算法 Boyer-Moore高质量实现代码详解与算法详解
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...
- kmp算法详解
转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- [转] KMP算法详解
转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的K ...
- 【转】AC算法详解
原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...
- KMP算法详解(转自中学生OI写的。。ORZ!)
KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...
- EM算法详解
EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...
- Tarjan算法详解
Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...
随机推荐
- C# 数据操作系列 - 15 SqlSugar 增删改查详解
0. 前言 继上一篇,以及上上篇,我们对SqlSugar有了一个大概的认识,但是这并不完美,因为那些都是理论知识,无法描述我们工程开发中实际情况.而这一篇,将带领小伙伴们一起试着写一个能在工程中使用的 ...
- Linux下VCS2014和Verdi2015的联合使用
VCS和Verdi是IC设计中常用的两款开发工具.VCS是Synopsys公司的产品,和大家所熟知的ModeSim一样的都是EDA仿真工具.Verdi是Nocas公司(已经被Synopsys公司收购) ...
- Kubernetes Dashborad 搭建
需求 基于网页查看Kubernetes 用户管理界面 安装步骤 在控制面板节点部署dashborad kubectl apply -f https://raw.githubusercontent.co ...
- 认证(Authentication)和授权(Authorization)总结
身份认证是验证你的身份,一旦通过验证,即启用授权.你所拥有的身份可以进行哪些操作都是由授权规定.例如,任何银行客户都可以创建一个账户(如用户名),并使用该账户登录该银行的网上服务,但银行的授权政策必须 ...
- Rocket - regmapper - RegisterCrossing
https://mp.weixin.qq.com/s/82iLT-fmDg9Comp2p9bxKg 简单介绍RegisterCrossing的实现. 1. BusyRegisterCrossing 简 ...
- background-color的覆盖范围
1. 一般div的background-color覆盖范围 到 border,margin的颜色由外层元素决定 2. body的background-color覆盖范围 到 margin,但 当htm ...
- Java 第十一届 蓝桥杯 省模拟赛 19000互质的个数
问题描述 不超过19000的正整数中,与19000互质的数的个数是多少? 答案提交 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将 ...
- Java实现 LeetCode 636 函数的独占时间(栈)
636. 函数的独占时间 给出一个非抢占单线程CPU的 n 个函数运行日志,找到函数的独占时间. 每个函数都有一个唯一的 Id,从 0 到 n-1,函数可能会递归调用或者被其他函数调用. 日志是具有以 ...
- Java实现 LeetCode 546 移除盒子(递归,vivo秋招)
546. 移除盒子 给出一些不同颜色的盒子,盒子的颜色由数字表示,即不同的数字表示不同的颜色. 你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止.每一轮你可以移除具有相同颜色的连续 k 个盒子( ...
- Java实现 LeetCode 449 序列化和反序列化二叉搜索树
449. 序列化和反序列化二叉搜索树 序列化是将数据结构或对象转换为一系列位的过程,以便它可以存储在文件或内存缓冲区中,或通过网络连接链路传输,以便稍后在同一个或另一个计算机环境中重建. 设计一个算法 ...