题目

  点这里看题目。

分析

  插头 DP ,考虑枚举一下两块之间的分割线,本质上就是两个端点都在边界上的路径。

   DP 过程中,我们将没有端点在边界上面的路径称为 1 路径,反之叫 2 路径

  对于 1 路径,我们不能中途把它连成环,因此 1 路径的插头需要用括号序表示(最小整数也可以,只要能判掉连通性就可以了)。

  接着对插头分一下类:

  1.一条 1 路径的左端点,编号为 1 。

  2.一条 1 路径的右端点,编号为 2 。

  3.一条 2 路径的一个端点,编号为 3 。(如果有 3 插头,那么这个 2 路径的另一个端点就在边界上)

  由于插头只有 4 种情况,因此我们使用 4 进制来压缩状态。

  另外,我们只能在边界上放\(2\)个端点,因此需要再开一维来记录一下。

   DP 状态如下:

  \(f(i,j,S,c)\):格子\((i,j)\)的轮廓线状态为\(S\),并且在边界上放了\(c\)个端点的方案数。

  转移嘛......写起来相当复杂,但是分类讨论本身不难想,所以想看就去代码里找吧qwq逃了。

代码

#include <cstdio>
#include <cstring> #define l j - 1
#define u j
#define d j - 1
#define r j
#define mov( x ) ( x << 1 )
#define mp( x ) grid[x.first][x.second] const int MAXN = 20, MAXM = 20, MAXS = ( 1 << 20 ) + 5;
//空间开大,不太清楚为什么qwq template<typename _T>
void read( _T &x )
{
x = 0;char s = getchar();int f = 1;
while( s > '9' || s < '0' ){if( s == '-' ) f = -1; s = getchar();}
while( s >= '0' && s <= '9' ){x = ( x << 3 ) + ( x << 1 ) + ( s - '0' ), s = getchar();}
x *= f;
} template<typename _T>
void write( _T x )
{
if( x < 0 ){ putchar( '-' ); x = ( ~ x ) + 1; }
if( 9 < x ){ write( x / 10 ); }
putchar( x % 10 + '0' );
} struct table
{
int f[MAXS], stk[MAXS], siz;
table() { memset( f, 0, sizeof f ), memset( stk, 0, sizeof stk ), siz = 0; }
int operator [] ( const int indx ) const { return f[stk[indx]]; }
int operator () ( const int indx ) const { return stk[indx]; }
void add( int S, int v ) { if( ! f[S] ) stk[++ siz] = S; f[S] += v; }
void clear() { while( siz ) f[stk[siz --]] = 0; }
}; struct DP_Structure
{
table F[3];
table& operator [] ( const int indx ) { return F[indx]; }
void clear() { for( int i = 0 ; i < 3 ; i ++ ) F[i].clear(); }
}dp[2]; int stk[MAXM] = {}, top;
int state[MAXM], matched[MAXM];
int grid[MAXN][MAXN];
int N, M, pre = 1, nxt = 0; void prepare() { pre ^= 1, nxt ^= 1, dp[nxt].clear(); }
int get( int x, int y ) { return ( x >> mov( y ) ) & 3; }
int clr( int x, int y ) { return x & ( ~ ( 3 << mov( y ) ) ); }
int reset( int x, int y, int z ) { return clr( x, y ) | ( z << mov( y ) ); }
int dbset( int x, int y, int a, int b = -1 ) { return reset( reset( x, y, a ), y + 1, ~ b ? b : a ); } void match()
{
for( int i = 0 ; i <= M ; i ++ )
{
if( state[i] == 1 ) stk[++ top] = i;
if( state[i] == 2 ) matched[stk[top]] = i, matched[i] = stk[top --];
}
} int encode( int *sta )
{
int ret = 0;
for( int i = M ; ~ i ; i -- ) ret = ( ret << 2 ) + sta[i];
return ret;
} void decode( int *sta, int val )
{
memset( sta, 0, MAXM * 4 );
for( int i = 0 ; i <= M ; i ++ ) sta[i] = val & 3, val >>= 2;
match();
} int main()
{
int S, v, lef, up, mtL, mtU;
read( N ), read( M );
N ++, M ++;
if( N > M ) N ^= M, M ^= N, N ^= M;
for( int i = 2 ; i < N ; i ++ )
for( int j = 2 ; j < M ; j ++ )
grid[i][j] = 1;
for( int i = 2 ; i < M ; i ++ ) grid[1][i] = grid[N][i] = 2;
for( int i = 2 ; i < N ; i ++ ) grid[i][1] = grid[i][M] = 2;
prepare();
dp[nxt][0].add( 0, 1 );
for( int i = 1 ; i <= N ; i ++ )
{
prepare();
for( int c = 0 ; c <= 2 ; c ++ )
for( int k = 1 ; k <= dp[pre][c].siz ; k ++ )
if( ! get( dp[pre][c]( k ), M ) )
dp[nxt][c].add( dp[pre][c]( k ) << 2, dp[pre][c][k] );
for( int j = 1 ; j <= M ; j ++ )
{
prepare();
for( int c = 0 ; c <= 2 ; c ++ )
for( int k = 1 ; k <= dp[pre][c].siz ; k ++ )
{
S = dp[pre][c]( k ), v = dp[pre][c][k];
lef = get( S, l ), up = get( S, u );
if( grid[i][j] == 0 ) { if( ! lef && ! up ) dp[nxt][c].add( S, v ); continue; }
decode( state, S );
if( grid[i][j] == 2 )
{
dp[nxt][c].add( S, v );
if( c == 2 ) continue;
if( i == 1 ) { if( ! lef && ! up ) dp[nxt][c + 1].add( reset( S, d, 3 ), v ); }
if( j == 1 ) { if( ! lef && ! up ) dp[nxt][c + 1].add( reset( S, r, 3 ), v ); }
//在上边界与左边界放端点,会在轮廓线上新增 3 插头
if( i == N )
{
if( lef || ! up ) continue;
if( up == 3 ) dp[nxt][c + 1].add( dbset( S, d, 0 ), v );
else
{
state[matched[u]] = 3, state[u] = 0;
dp[nxt][c + 1].add( dbset( encode( state ), d, 0 ), v );
}
}
if( j == M )
{
if( ! lef || up ) continue;
if( lef == 3 ) dp[nxt][c + 1].add( dbset( S, d, 0 ), v );
else
{
state[matched[l]] = 3, state[l] = 0;
dp[nxt][c + 1].add( dbset( encode( state ), d, 0 ), v );
}
}
//在下边界与右边界放端点,会与已有插头连接;如果已有插头不是 3 插头,就需要考虑 3 插头移动的情况
}
else
{
if( ! lef && ! up ) dp[nxt][c].add( S, v ), dp[nxt][c].add( dbset( S, d, 1, 2 ), v );
if( lef && ! up ) dp[nxt][c].add( S, v ), dp[nxt][c].add( dbset( S, d, 0, lef ), v );
if( ! lef && up ) dp[nxt][c].add( S, v ), dp[nxt][c].add( dbset( S, d, up, 0 ), v );
if( lef && up )
{
mtL = matched[l], mtU = matched[u];
state[d] = state[r] = 0;
if( lef == 3 && up ^ 3 ) state[mtU] = 3;
if( lef ^ 3 && up == 3 ) state[mtL] = 3;
//考虑 3 插头移动的情况
if( lef == 1 && up == 1 ) state[mtU] = 1;
if( lef == 2 && up == 2 ) state[mtL] = 2;
//正常括号转移
if( lef ^ 1 || up ^ 2 ) dp[nxt][c].add( encode( state ), v );
//需要把会连成环的情况判掉
}
}
}
}
}
write( dp[nxt][2][0] ), putchar( '\n' );
return 0;
}

[CQOI2007]矩形的更多相关文章

  1. BZOJ1259:[CQOI2007]矩形rect(DFS)

    Description 给一个a*b矩形,由a*b个单位正方形组成.你需要沿着网格线把它分成分空的两部分,每部分所有格子连通,且至少有一个格子在原矩形的边界上.“连通”是指任两个格子都可以通过水平或者 ...

  2. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  3. BZOJ 刷题总结(持续更新)

    本篇博客按照题号排序(带*为推荐题目) 1008 [HNOI2008]越狱 很经典的题了..龟速乘,龟速幂裸题,, 1010 [HNOI2008]玩具装箱toy* 斜率优化 基本算是裸题. 1012 ...

  4. [BOT] 一种android中实现“圆角矩形”的方法

    内容简介 文章介绍ImageView(方法也可以应用到其它View)圆角矩形(包括圆形)的一种实现方式,四个角可以分别指定为圆角.思路是利用"Xfermode + Path"来进行 ...

  5. C语言 · 矩形面积交

    问题描述 平面上有两个矩形,它们的边平行于直角坐标系的X轴或Y轴.对于每个矩形,我们给出它的一对相对顶点的坐标,请你编程算出两个矩形的交的面积. 输入格式 输入仅包含两行,每行描述一个矩形. 在每行中 ...

  6. canvas快速绘制圆形、三角形、矩形、多边形

    想看前面整理的canvas常用API的同学可以点下面: canvas学习之API整理笔记(一) canvas学习之API整理笔记(二) 本系列文章涉及的所有代码都将上传至:项目代码github地址,喜 ...

  7. [LeetCode] Perfect Rectangle 完美矩形

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...

  8. [LeetCode] Rectangle Area 矩形面积

    Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...

  9. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

随机推荐

  1. python3.x 基础三:字符集问题

    总结了一张表,更详细信息百度百科: 序号 年份 编码 标准协会 特点 二进制长度 字符长度 表现 1 1967 ASCII 美国国家标准学会(American National Standard In ...

  2. 王艳 201771010127《面向对象程序设计(java)》第三周学习总结

    一:理论知识总结: 第一章:主要概述了java相比其他程序设计语言(如C语言.c++)之间的不同性能.为我们揭示了java这种语言的设计初衷一节截至目前java语言达到的效果.另外,还简要介绍了jav ...

  3. 全局设置UITableView的属性|正确计算contentSize|MJRefresh mj_footer 能正常隐藏在底部,不因为数据过少展示在页面中部

    可在AppDelegate中设置 if (@available(iOS 11.0, *)) { UITableView.appearance.estimatedRowHeight = 0; UITab ...

  4. 【python爬虫】解决歌荒,下歌利器

    python下载图片,mp3,想必很多人都早已耳闻,今天给大家来点不一样的, 让你下载高逼格高品质,带进度条,实时显示下载速度 详见源码:https://www.kesci.com/home/proj ...

  5. Pyqt5_Python运用过程中一些问题和技巧

    安装python3&pyqt5 1.         网下载python3.7安装包,安装时选择自定义安装,勾选上PIP 直接去官网上下载,一路下一步就可以了,然后将D:\Python37.D ...

  6. vue生命周期函数2

    转载:http://blog.csdn.net/qq_15766181/article/details/73549933 钩子就好像是把人的出生到死亡分成一个个阶段,你肯定是在出生阶段起名字,而不会在 ...

  7. 计算机启动 Ubuntu系统初始化 SysV Systemd

    计算机启动过程 第一阶段:BIOS boot (bootstrap的缩写)来自一句谚语:"pull oneself up by one's bootstraps" 最早的时候,计算 ...

  8. MySQL所有的安装部署方式

    目录 一.前言 二.关于MySQL的安装 三.部署规划 3.1 服务器规划 3.2 数据库目录规划 四.准备工具 五.通用二进制包安装MySQL 5.1 上传MySQL通用二进制安装包到node7的/ ...

  9. [PHP学习教程 - 数字]001.数字补0(Num padding)

    引言:在日常工作中,经常要用到数字前后补0的操作,如:日期格式yyyy-MM-dd等等. 在php中有多种前后填充函数——今天,我们就介绍常用的两种,实现数字补零: str_pad sprintf 大 ...

  10. [工具-003]如何从ipa中提取info.plist并提取相应信息

    最近公司的产品要进行一次批量的升级,产品中的一些配置存放在info.plist,为了保证产品的信息无误,我们必须要对产品的发布信息进行验证.例如:广告ID,umeng,talkingdata等等.那么 ...