Describtion

In mathematics, the greatest common divisor (gcd) of two or more integers, when at least one of them is not zero, is the largest positive integer that divides the numbers without a remainder. For example, the GCD of 8 and 12 is 4.—Wikipedia

BrotherK and Ery like playing mathematic games. Today, they are playing a game with GCD.

BrotherK has an array A with N elements: A1 ~ AN, each element is a integer in [1, 10^9]. Ery has Q questions, the i-th question is to calculate

GCD(ALi, ALi+1, ALi+2, …, ARi), and BrotherK will tell her the answer.

BrotherK feels tired after he has answered Q questions, so Ery can only play with herself, but she don’t know any elements in array A. Fortunately, Ery remembered all her questions and BrotherK’s answer, now she wants to recovery the array A.

Input

The first line contains a single integer T, indicating the number of test cases.

Each test case begins with two integers N, Q, indicating the number of array A, and the number of Ery’s questions. Following Q lines, each line contains three integers Li, Ri and Ansi, describing the question and BrotherK’s answer.

T is about 10

2 ≤ N Q ≤ 1000

1 ≤ Li < Ri ≤ N

1 ≤ Ansi ≤ 109

Output

For each test, print one line.

If Ery can’t find any array satisfy all her question and BrotherK’s answer, print “Stupid BrotherK!” (without quotation marks). Otherwise, print N integer, i-th integer is Ai.

If there are many solutions, you should print the one with minimal sum of elements. If there are still many solutions, print any of them.

Sample Input

2

2 2

1 2 1

1 2 2

2 1

1 2 2

Sample Output

Stupid BrotherK!

2 2

由于区间长度只有1000,所以暴力枚举,完事了,最后在检查一编完事。

#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
long long n, q; long long num[N], l[N], r[N], s[N]; long long gcd(long long a, long long b)
{
if (b == 0)
{
return a;
}
else
{
return gcd(b, a % b);
}
} int main()
{
int t;
scanf("%d", &t);
while (t--)
{
cin >> n >> q;
for (int i = 0; i < N; ++i)
{
num[i] = 1;
}
for (int i = 0; i < q; ++i)
{
cin >> l[i] >> r[i] >> s[i];
for (int j = l[i]; j <= r[i]; ++j)
{
num[j] = (num[j] * s[i]) / gcd(num[j], s[i]);
}
}
bool flag = true;
for (int i = 0; i < q; i++)
{
long long ans = num[l[i]];
for (int j = l[i] + 1; j <= r[i]; j++)
{
ans = gcd(ans, num[j]);
}
if (ans != s[i])
{
flag = false;
break;
}
}
if (flag)
{
for (int i = 1; i <n; i++)
{
cout << num[i]<<" ";
}
cout<<num[n]<<endl;
}
else
{
printf("Stupid BrotherK!\n");
}
}
return 0;
}

数学--数论--HDU 5223 - GCD的更多相关文章

  1. 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)

    先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...

  2. 数学--数论--HDU 5382 GCD?LCM?(详细推导,不懂打我)

    Describtion First we define: (1) lcm(a,b), the least common multiple of two integers a and b, is the ...

  3. 数学--数论--HDU 5019 revenge of GCD

    Revenge of GCD Problem Description In mathematics, the greatest common divisor (gcd), also known as ...

  4. 数学--数论--HDU 1792 A New Change Problem (GCD+打表找规律)

    Problem Description Now given two kinds of coins A and B,which satisfy that GCD(A,B)=1.Here you can ...

  5. 数学--数论--HDU 2582 F(N) 暴力打表找规律

    This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...

  6. HDU 5223 GCD

    题意:给出一列数a,给出m个区间,再给出每个区间的最小公倍数 还原这列数 因为数组中的每个数至少都为1,而且一定是这个区间的最小公约数ans[i]的倍数,求出它与ans[i]的最小公倍数,如果大于1e ...

  7. 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂

    Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...

  8. 数学--数论--HDU - 6322 打表找规律

    In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n ...

  9. 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)

    Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...

随机推荐

  1. Android 6.0及以上版本如何实现从图库中选取图片和拍照功能

    XML 代码: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:andr ...

  2. Linux 压缩备分篇(一 备份数据)

    备份文件                dump dump: -S                    仅列出待备份数据需要多少磁盘空间才能够备份完毕 -u                    将 ...

  3. Struts2-学习笔记系列(6)-动态调用action

    动态调用之前需要配置: <!--动态方法调用--> <constant name="struts.enable.DynamicMethodInvocation" ...

  4. 实战if-else 过多详解

    1.本文实例代码仅仅是俩个小例子. package com.example.demo.pattern.ifElse; import java.util.HashMap; import java.uti ...

  5. Centos7_Root密码重置

    原因: 最近出去见女朋友,竟然忘了Root用户的密码,此时考验linux基础扎不扎实的时候到了... 操作步骤: 解释补充: mount -o remountr,w / #修改根目录文件系统的权限,实 ...

  6. IDEA我常用的快捷键

    IDEA快捷键 全屏编写代码:Ctrl+Shift+F12

  7. matlab将数据读取和写入txt文档

    原文链接 matlab中打开文件 fid = fopen(文件名,‘打开方式’): 说明:fid用于存储文件句柄值,如果fid>0,这说明文件打开成功. 另外,在这些字符串后添加一个“t”,如‘ ...

  8. Python爬取抖音高颜值小视频

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: 有趣的python PS:如有需要Python学习资料的小伙伴可以加 ...

  9. stand up meeting 11/18/2015

    今日工作总结: 冯晓云:完成C#版本API的class library编译,尝试与主程序进行通信:昨天临时通知让用C++封装,不解!!![后续:我用C#做了一个查词的APP,调用的就是这个API的DL ...

  10. O - Employment Planning HDU - 1158

    题目大意: 第一行一个n,表示共n个月份,然后第二行分别表示一个工人的聘请工资,月薪水,解雇工资.第三行是n个月每个月需要的工人的最少数目.然后求最少花费 题解: dp[i][j] 表示第i个月聘请j ...