疯子的算法总结10--最小生成树Kruscal
按照权值排序可得,就有如下顺序:
1. 1-2 1
2. 1-4 2
3. 1-5 2
4. 2-5 3
5. 2-3 4
6. 4-5 4
每次选取最小边泉,判断是否同属一个集合,如果不属于同一集合,就把它加到左端点集合中,也就是说,两个点不属于一个集合说明这条边不在树中,即可将其加入左端点集合。
下面我们模拟算法过程:
每次,直接把每次找到的边找到,就可以了!
对于Kruscal它更适合于稀疏图,借助贪心与并查集实现,我们看懂了上述算法实现过程,很容易写出算法!
代码实现
#include<iostream>
#include<queue>
#include<algorithm>
#include<set>
#include<cmath>
#include<vector>
#include<map>
#include<stack>
#include<bitset>
#include<cstdio>
#include<cstring>
//---------------------------------Sexy operation--------------------------//
#define cini(n) scanf("%d",&n)
#define cinl(n) scanf("%lld",&n)
#define cinc(n) scanf("%c",&n)
#define cins(s) scanf("%s",s)
#define coui(n) printf("%d",n)
#define couc(n) printf("%c",n)
#define coul(n) printf("%lld",n)
#define debug(n) printf("%d_________________________________\n",n);
#define speed ios_base::sync_with_stdio(0)
#define file freopen("input.txt","r",stdin);freopen("output.txt","w",stdout)
//-------------------------------Actual option------------------------------//
#define rep(i,a,n) for(int i=a;i<=n;i++)
#define per(i,n,a) for(int i=n;i>=a;i--)
#define Swap(a,b) a^=b^=a^=b
#define Max(a,b) (a>b?a:b)
#define Min(a,b) a<b?a:b
#define mem(n,x) memset(n,x,sizeof(n))
#define mp(a,b) make_pair(a,b)
#define pb(n) push_back(n)
#define dis(a,b,c,d) ((double)sqrt((a-c)*(a-c)+(b-d)*(b-d)))
//--------------------------------constant----------------------------------//
#define INF 0x3f3f3f3f
#define esp 1e-9
#define PI acos(-1)
using namespace std;
typedef pair<int,int>PII;
typedef pair<string,int>PSI;
typedef long long ll;
//___________________________Dividing Line__________________________________/
int n,m;
int father[1100000];
struct node
{
int x;
int y;
int k;
}Q[1100000];
int find(int x)
{
if(father[x]==x)
return x;
return father[x]=find(father[x]);
}
bool cmp(node a,node b)
{
return a.k<b.k;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
int cont=0,sum=0,st=0;
for(int i=0;i<m;i++)
{
scanf("%d %d %d",&Q[i].x,&Q[i].y,&Q[i].k);
cont+=Q[i].k;
}
sort(Q,Q+m,cmp);
for(int i=1;i<=n;i++) father[i]=i;
for(int i=0;i<m;i++)
{
int tx=find(Q[i].x);
int ty=find(Q[i].y);
if(tx!=ty)
{
sum+=Q[i].k;
st++;
father[tx]=ty;
if(st==n-1)
break;
}
}
printf("%d\n",sum);
}
return 0;
}
疯子的算法总结10--最小生成树Kruscal的更多相关文章
- HDU 5253 最小生成树 kruscal
Description 老 Jack 有一片农田,以往几年都是靠天吃饭的.但是今年老天格外的不开眼,大旱.所以老 Jack 决定用管道将他的所有相邻的农田全部都串联起来,这样他就可以从远处引水过来进行 ...
- [技术栈]C#利用Luhn算法(模10算法)对IMEI校验
1.Luhn算法(模10算法) 通过查看ISO/IEC 7812-1:2017文件可以看到对于luhn算法的解释,如下图: 算法主要分为三步: 第一步:从右边第一位(最低位)开始隔位乘2: 第二步:把 ...
- 最小生成树——Kruscal(克鲁斯卡尔算法)
一.核心思想 将输入的数据由小到大进行排序,再使用并查集算法(传送门)将每个点连接起来,同时求和. 个人认为这个算法比较偏向暴力,有些题可能会超时. 二.例题 洛谷-P3366 题目地址:ht ...
- 贪心算法(2)-Kruskal最小生成树
什么是最小生成树? 生成树是相对图来说的,一个图的生成树是一个树并把图的所有顶点连接在一起.一个图可以有许多不同的生成树.一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n ...
- 【UVA 10307 Killing Aliens in Borg Maze】最小生成树, kruscal, bfs
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20846 POJ 3026是同样的题,但是内存要求比较严格,并是没有 ...
- 贪心算法(Greedy Algorithm)最小生成树 克鲁斯卡尔算法(Kruskal's algorithm)
克鲁斯卡尔算法(Kruskal's algorithm)它既是古典最低的一个简单的了解生成树算法. 这充分反映了这一点贪心算法的精髓.该方法可以通常的图被表示.图选择这里借用Wikipedia在.非常 ...
- 【算法导论】最小生成树之Prime法
关于最小生成树的概念,在前一篇文章中已经讲到,就不在赘述了.下面介绍Prime算法: 其基本思想为:从一个顶点出发,选择由该顶点出发的最小权值边,并将该边的另一个顶点包含进来,然后找出 ...
- 【算法导论】最小生成树之Kruskal法
在图论中,树是指无回路存在的连通图.一个连通图的生成树是指包含了所有顶点的树.如果把生成树的边的权值总和作为生成树的权,那么权值最小的生成树就称为最小生成树.因为最小生成树在实际中有很多应用,所以我们 ...
- POJ - 2421 Constructing Roads 【最小生成树Kruscal】
Constructing Roads Description There are N villages, which are numbered from 1 to N, and you should ...
随机推荐
- fastfdfs搭配nginx
fastfdfs搭配nginx 下载fastdfs-nginx-module 模块 wget https://github.com/happyfish100/fastdfs-nginx-module/ ...
- MTK Android 预置APK
[FAQ03038] 如何预置APK [DESCRIPTION]1, 如何将带源码的 APK 预置进系统?2, 如何将无源码的APK预置进系统?3, 如何预制APK使得用户可以卸载?4, 如何使得用户 ...
- Python爬虫系列(七):提高解析效率
如果仅仅因为想要查找文档中的<a>标签而将整片文档进行解析,实在是浪费内存和时间.最快的方法是从一开始就把<a>标签以外的东西都忽略掉. SoupStrainer 类可以定义文 ...
- sparkSessiontest
记事本内容: 打印结构: 方法1: object SparkSessionTest { case class Person(name:String,age:Int) def main(args: Ar ...
- Golang 性能测试 (3) 跟踪刨析 golang trace
简介 对于绝大部分服务,跟踪刨析是用不到的.但是如果遇到了下面问题,可以不妨一试: 怀疑哪个协程慢了 系统调用有问题 协程调度问题 (chan 交互.互斥锁.信号量等) 怀疑是 gc (Garbage ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- 数据结构和算法(Golang实现)(9)基础知识-算法复杂度及渐进符号
算法复杂度及渐进符号 一.算法复杂度 首先每个程序运行过程中,都要占用一定的计算机资源,比如内存,磁盘等,这些是空间,计算过程中需要判断,循环执行某些逻辑,周而反复,这些是时间. 那么一个算法有多好, ...
- Maven+JSP+Servlet+JDBC+Redis+Mysql实现的黑马旅游网
项目简介 项目来源于:https://gitee.com/haoshunyu/travel 本系统是基于Maven+JSP+Servlet+JdbcTemplate+Redis+Mysql实现的旅游网 ...
- vue使用trackingjs
前言:因为公司是做人工智能-AI的,所有一个web数据平台为了装X,需要做个人脸登陆.前台需要把人脸的base64发给后台去做人脸校验. 功能很简单,需要注意的是web需要实现“调用摄像头”和“自动拍 ...
- 永恒之蓝MS17010复现
MS17010复现 靶机win7:192.168.41.150 攻击kali: 192.168.41.147 扫描 通过auxiliary/scanner/smb/smb_ms17_010模块扫描 ...