Description

link

题意:给一个全\(0\)矩阵,每次支持一个修改,修改不还原(这要是还原了不就成\(A\)题了)

然后询问每一次修改完了当前矩阵的连通块个数

每一个修改的值单调不降

修改次数 \(\leq 10^6\)

Solution

这个是一道并查集题(感觉我原来从来没有写过任何并查集维护信息的题目)

具体就是我们对于每一个修改要考虑的是这个修改带来的贡献,就是和相邻颜色的对比

能合并的就合并一下,然后统计答案

这时,我们把这个题转化成了对每一种颜色考虑,然后看这个颜色的改变(最后开个桶就成了)

对于每种颜色,会有两种:添加一个颜色(正序处理),颜色被覆盖(逆序处理)

逆序的原因是被覆盖的时候原先有的这个连通块可能被整成多个连通块

(如果我们逆序处理覆盖,就等同于正序处理添加,贡献相减即可)

真是一道并查集应用的不错题目

Code

#include<bits/stdc++.h>
using namespace std;
#define int long long
namespace yspm{
inline int read()
{
int res=0,f=1; char k;
while(!isdigit(k=getchar())) if(k=='-') f=-1;
while(isdigit(k)) res=res*10+k-'0',k=getchar();
return res*f;
}
const int N=310,Q=2e6+10;
int fx[4]={0,-1,1,0},fy[4]={-1,0,0,1};
int n,m,q,maxx,ans[Q],fa[N*N],now[N][N];
struct query{int id,x,y;}; vector<query>q1[Q],q2[Q];
inline int num(int x,int y){return (x-1)*m+y;}
inline int rt(int x){return fa[x]==x?x:fa[x]=rt(fa[x]);}
inline bool in(int x,int y){return x>0&&x<=n&&y>0&&y<=m;}
inline void clear(int n){for(int i=1;i<=n;++i) fa[i]=i; return ;}
inline bool merge(int x,int y){x=rt(x),y=rt(y); if(x==y) return 0; return fa[x]=y,1;}
signed main()
{
n=read(); m=read(); q=read();
for(int i=1,x,y,c;i<=q;++i)
{
x=read(),y=read(),c=read(); maxx=c;
q2[now[x][y]].push_back((query){i,x,y});
q1[now[x][y]=c].push_back((query{i,x,y}));
}
for(int i=1;i<=n;++i)
{
for(int j=1;j<=m;++j) q2[now[i][j]].push_back((query){0,i,j});
}memset(now,-1,sizeof(now));
for(int i=0,sz,id,x,y;i<=maxx;++i)
{
sz=q1[i].size(); if(!sz) continue; clear(n*m);
for(int j=0;j<sz;++j)
{
id=q1[i][j].id; x=q1[i][j].x; y=q1[i][j].y;
now[x][y]=i; ++ans[id];
for(int k=0;k<4;++k)
{
int tx=x+fx[k],ty=y+fy[k];
if(in(tx,ty)&&now[tx][ty]==i) ans[id]-=merge(num(x,y),num(tx,ty));
}
}
}memset(now,-1,sizeof(now));
for(int i=0,sz,id,x,y;i<=maxx;++i)
{
sz=q2[i].size(); if(!sz) continue; clear(n*m);
for(int j=sz-1;j>=0;--j)
{
id=q2[i][j].id; x=q2[i][j].x; y=q2[i][j].y;
now[x][y]=i; --ans[id];
for(int k=0;k<4;++k)
{
int tx=x+fx[k],ty=y+fy[k];
if(in(tx,ty)&&now[tx][ty]==i) ans[id]+=merge(num(x,y),num(tx,ty));
}
}
}
ans[0]=1; for(int i=1;i<=q;++i) printf("%lld\n",ans[i]+=ans[i-1]);
return 0;
}
}
signed main(){return yspm::main();}

Codeforces1303F Number of Components的更多相关文章

  1. 【CF1151E】Number of Components

    [CF1151E]Number of Components 题面 CF 题解 联通块个数=点数-边数. 然后把边全部挂在较小的权值上. 考虑从小往大枚举左端点,等价于每次删掉一个元素,那么删去点数,加 ...

  2. CodeForces 1151E Number of Components

    题目链接:http://codeforces.com/problemset/problem/1151/E 题目大意: n个人排成一个序列,标号为 1~n,第 i 个人的学习成绩为 ai,现在要选出学习 ...

  3. Codefores 1151E Number of Components

    大意:给定n元素序列$a$, $1\le a_i \le n$, 定义函数$f(l,r)$表示范围在$[l,r]$以内的数构成的连通块个数, 求$\sum\limits_{i=1}^{n}\sum\l ...

  4. cf1151e number of components

    很常见的思想:将整体求改为统计每个部分的贡献 本题中统计[l, r]时, 每个连通块有一个重要特征, 最右端的数在[l,r]中而下一个数不在(好像是句废话 那么我们分别考虑每个点对连通块的贡献, 即它 ...

  5. [CF1303F] Number of Components - 并查集,时间倒流

    有一个 \(n \times m\) 矩阵,初态下全是 \(0\). 如果两个相邻元素(四连通)相等,我们就说它们是连通的,且这种关系可以传递. 有 \(q\) 次操作,每次指定一个位置 \((x_i ...

  6. Codeforces 1270H - Number of Components(线段树)

    Codeforces 题目传送门 & 洛谷题目传送门 首先需发现一个性质,那就是每一个连通块所对应的是一个区间.换句话说 \(\forall l<r\),若 \(l,r\) 在同一连通块 ...

  7. [翻译]Writing Custom Report Components 编写自定义报表组件

    摘要:简单介绍了如何编写一个FastReport的组件,并且注册到FastReport中使用.   Writing Custom Report Components 编写自定义报表组件 FastRep ...

  8. OpenCV人脸识别Eigen算法源码分析

    1 理论基础 学习Eigen人脸识别算法需要了解一下它用到的几个理论基础,现总结如下: 1.1 协方差矩阵 首先需要了解一下公式: 共公式可以看出:均值描述的是样本集合的平均值,而标准差描述的则是样本 ...

  9. SDWebImage源码解读_之SDWebImageDecoder

    第四篇 前言 首先,我们要弄明白一个问题? 为什么要对UIImage进行解码呢?难道不能直接使用吗? 其实不解码也是可以使用的,假如说我们通过imageNamed:来加载image,系统默认会在主线程 ...

随机推荐

  1. EL&JSTL简单介绍

    EL表达式 是为了简化咱们的jsp代码,具体一点就是为了简化在jsp里面写的那些java代码. 写法格式 ${表达式 } 如果从作用域中取值,会先从小的作用域开始取,如果没有,就往下一个作用域取. 一 ...

  2. 面试题(7)之 leetcode-003

    给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度. 示例1: 输入: "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc&quo ...

  3. Essay写作没灵感怎么办?

    进入6月了,童鞋们都在干啥呢?有人回国玩耍了,有人周游欧洲了,当然也有人还在悲催地上课写作业.但是呢不管你此刻在哪里,final essay或者dissertation都离你不远啦!可是可是,有些留学 ...

  4. x264报错No working C compiler found.

    现象: 缺少C++部署包 解决 [root@localhost x264]# yum -y install gcc gcc-c++ kernel-devel [root@localhost x264] ...

  5. 用豆瓣加速安装pandas、numpy、matplotlib(画图)

    安装pandas.numpy会同时被安装 #pthony2.x,用豆瓣加速安装pandas pip install -i https://pypi.doubanio.com/simple/ panda ...

  6. SASS - 操作符

    SASS – 简介 SASS – 环境搭建 SASS – 使用Sass程序 SASS – 语法 SASS – 变量 SASS- 局部文件(Partial) SASS – 混合(Mixin) SASS ...

  7. promise 核心技术3 使用

    什么是promise?(加深理解) 抽象表达:(比较高的高度 看这门技术) Promise是js中进行异步操作的新的解决方案(旧形式:纯回调的形式) 具体表达: 从语法上,Promise是一个构造函数 ...

  8. Win10下 Java环境变量配置

    安装java的JDK   下载地址 此电脑->属性->高级设置 "系统变量"新建   变量名:Java_Home   变量值:D:\Program Files\Java ...

  9. Shell脚本exit用法与区别

    在Shell脚本中,往往会遇到一些判断类型为某个值不符合预期值的时候就退出主脚本/当前脚本/当前函数,那么Exit与return的用法与区别是什么呢? 下面先使用Exit举个简单例子,脚本内容如下 # ...

  10. stegsolve使用方法

    Stegsolve使用方法(是因为ctf题总是遇到并且目前百度没有十分详细的探究说明) 这个没什么好说的,打开文件 ,保存,退出 在分析里面从上到下的依次意思是 File Format:文件格式 Da ...