topological space
\(\underline{Def:}\)A topology space
\(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\underline{X}\),called the underlying space of \(\mathcal{X}\) ,and a family \(\eth_{x}\)of subsets of \(\mathcal{X}\)(ie.\(\eth_{x}\subset P(\underline{X})\))
\(P(\underline{X})\)means the power set of \(\underline{X}\)
s.t.:(1):\(\underline{X}\) and \(\varnothing \in \eth_{x}\)
(2):\(U_{\alpha}\in \eth_{x}(\alpha \in A) \Rightarrow\)
\(\cup_{\alpha \in A}U_{\alpha} \in \eth_{x}\)
(3).\(U,U^{\prime}\in \eth_{x} \Rightarrow U \cap U^{\prime} \in \eth_{x}\)
\(\eth_{x}\) is called a topology(topological structure) on \(\underline{X}\)
\(\underline{Convention:}\)We usually use \(\mathcal{X}\) to indicate the set \(\underline{X}\)and omit the subscript \(x\) in \(\eth_{x}\) by saying "a topological space\((X,\eth)\)"
\(\underline{Examples:}\)(1)metric space:
\((X,d) \looparrowright(X,\eth_{d})\)(open sets induced by d)
\(\bullet\)Different distance funcs might determine the same topology
topological space的更多相关文章
- Metaphor of quotient space
In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition ...
- Metric space,open set
目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...
- [zz] Pixar’s OpenSubdiv V2: A detailed look
http://www.fxguide.com/featured/pixars-opensubdiv-v2-a-detailed-look/ Pixar’s OpenSubdiv V2: A detai ...
- FAQ: Machine Learning: What and How
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...
- Continuity of arithmetic operations
Arithmetic operations taught in elementary schools are continuous in the high level topological poin ...
- James Munkres Topology: Lemma 21.2 The sequence lemma
Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...
- James Munkres Topology: Theorem 20.3 and metric equivalence
Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...
- Concept of function continuity in topology
Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...
- Tychonov Theorem
(Remark: The proof presented in this post is a reorganization and interpretation of that given by Ja ...
随机推荐
- redis主从复制原理与优化-高可用
一 什么是主从复制 机器故障:容量瓶颈:QPS瓶颈 一主一从,一主多从 做读写分离 做数据副本 扩展数据性能 一个maskter可以有多个slave 一个slave只能有一个master 数据流向是单 ...
- Ubuntu16.04上安装cudnn教程和opencv
https://blog.csdn.net/wang15061955806/article/details/80791112 Ubuntu16.04上安装cudnn教程 2018年06月24日 14: ...
- 洛谷 P5661 公交换乘(队列)
题目传送门 解题思路: 暴力模拟. AC代码: #include<iostream> #include<cstdio> #include<queue> using ...
- [NOI2019]弹跳(KD-Tree)
被jump送退役了,很生气. 不过切了这题也进不了队,行吧. 退役后写了一下,看到二维平面应该就是KD树,然后可以在KD树上做最短路,然后建立堆和KDTree.然后每次更新则是直接把最短路上的节点删掉 ...
- salt如何查看文档帮助
1.查看普通模块和函数使用方法 salt 'minion' sys.doc module_name salt ‘minion' sys.doc module_name.function_name ...
- phpmyadmin拿网站shell
开门见山 1. 找到一个赌博网站,发现存在php探针界面,在下面输入密码尝试用弱口令进行连接,尝试是否成功 失败的结果是这样. 2. 成功! 3. 连接成功的,点击phpMyAdmin管理,进行弱口令 ...
- vue中在时间输入框中默认显示时间
<template> <card> <label>开始时间</label> <DatePicker v-model="startTime ...
- spring手动回滚当前事务
通常情况下,主动回滚事务,可以手动抛异常即可,不抛异常可以如下方式回滚 TransactionAspectSupport.currentTransactionStatus().setRollbackO ...
- 吴裕雄--天生自然 PYTHON3开发学习:基础语法
#!/usr/bin/python3 # 第一个注释 print ("Hello, Python!") # 第二个注释 #!/usr/bin/python3 # 第一个注释 # 第 ...
- Python重学记录1
写下这个标题觉得可笑,其实本人2014年就自学过一次python,当时看的是中谷教育的milo老师的视频,也跟着写了一些代码,只是因为当时工作上用不到也就淡忘了.不过说实话当时的水平也很低下,本来也没 ...