\(\underline{Def:}\)A topology space
\(\mathcal{X}=(\underline{X},\eth_{x})\)consists of a set \(\underline{X}\),called the underlying space of \(\mathcal{X}\) ,and a family \(\eth_{x}\)of subsets of \(\mathcal{X}\)(ie.\(\eth_{x}\subset P(\underline{X})\))
\(P(\underline{X})\)means the power set of \(\underline{X}\)
s.t.:(1):\(\underline{X}\) and \(\varnothing \in \eth_{x}\)
(2):\(U_{\alpha}\in \eth_{x}(\alpha \in A) \Rightarrow\)
\(\cup_{\alpha \in A}U_{\alpha} \in \eth_{x}\)
(3).\(U,U^{\prime}\in \eth_{x} \Rightarrow U \cap U^{\prime} \in \eth_{x}\)
\(\eth_{x}\) is called a topology(topological structure) on \(\underline{X}\)
\(\underline{Convention:}\)We usually use \(\mathcal{X}\) to indicate the set \(\underline{X}\)and omit the subscript \(x\) in \(\eth_{x}\) by saying "a topological space\((X,\eth)\)"
\(\underline{Examples:}\)(1)metric space:
\((X,d) \looparrowright(X,\eth_{d})\)(open sets induced by d)
\(\bullet\)Different distance funcs might determine the same topology

topological space的更多相关文章

  1. Metaphor of quotient space

    In James Munkres "Topology" Section 22, the quotient space is defined as below. Definition ...

  2. Metric space,open set

    目录 引入:绝对值 度量空间 Example: 开集,闭集 引入:绝对值 distance\(:|a-b|\) properties\(:(1)|x| \geq 0\),for all \(x \in ...

  3. [zz] Pixar’s OpenSubdiv V2: A detailed look

    http://www.fxguide.com/featured/pixars-opensubdiv-v2-a-detailed-look/ Pixar’s OpenSubdiv V2: A detai ...

  4. FAQ: Machine Learning: What and How

    What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-b ...

  5. Continuity of arithmetic operations

    Arithmetic operations taught in elementary schools are continuous in the high level topological poin ...

  6. James Munkres Topology: Lemma 21.2 The sequence lemma

    Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a ...

  7. James Munkres Topology: Theorem 20.3 and metric equivalence

    Proof of Theorem 20.3 Theorem 20.3 The topologies on \(\mathbb{R}^n\) induced by the euclidean metri ...

  8. Concept of function continuity in topology

    Understanding of continuity definition in topology When we learn calculus in university as freshmen, ...

  9. Tychonov Theorem

    (Remark: The proof presented in this post is a reorganization and interpretation of that given by Ja ...

随机推荐

  1. redis主从复制原理与优化-高可用

    一 什么是主从复制 机器故障:容量瓶颈:QPS瓶颈 一主一从,一主多从 做读写分离 做数据副本 扩展数据性能 一个maskter可以有多个slave 一个slave只能有一个master 数据流向是单 ...

  2. Ubuntu16.04上安装cudnn教程和opencv

    https://blog.csdn.net/wang15061955806/article/details/80791112 Ubuntu16.04上安装cudnn教程 2018年06月24日 14: ...

  3. 洛谷 P5661 公交换乘(队列)

    题目传送门 解题思路: 暴力模拟. AC代码: #include<iostream> #include<cstdio> #include<queue> using ...

  4. [NOI2019]弹跳(KD-Tree)

    被jump送退役了,很生气. 不过切了这题也进不了队,行吧. 退役后写了一下,看到二维平面应该就是KD树,然后可以在KD树上做最短路,然后建立堆和KDTree.然后每次更新则是直接把最短路上的节点删掉 ...

  5. salt如何查看文档帮助

    1.查看普通模块和函数使用方法 salt 'minion' sys.doc  module_name salt ‘minion'  sys.doc module_name.function_name ...

  6. phpmyadmin拿网站shell

    开门见山 1. 找到一个赌博网站,发现存在php探针界面,在下面输入密码尝试用弱口令进行连接,尝试是否成功 失败的结果是这样. 2. 成功! 3. 连接成功的,点击phpMyAdmin管理,进行弱口令 ...

  7. vue中在时间输入框中默认显示时间

    <template> <card> <label>开始时间</label> <DatePicker v-model="startTime ...

  8. spring手动回滚当前事务

    通常情况下,主动回滚事务,可以手动抛异常即可,不抛异常可以如下方式回滚 TransactionAspectSupport.currentTransactionStatus().setRollbackO ...

  9. 吴裕雄--天生自然 PYTHON3开发学习:基础语法

    #!/usr/bin/python3 # 第一个注释 print ("Hello, Python!") # 第二个注释 #!/usr/bin/python3 # 第一个注释 # 第 ...

  10. Python重学记录1

    写下这个标题觉得可笑,其实本人2014年就自学过一次python,当时看的是中谷教育的milo老师的视频,也跟着写了一些代码,只是因为当时工作上用不到也就淡忘了.不过说实话当时的水平也很低下,本来也没 ...