本文所使用的golang为1.14,gdb为8.1。

一直以来对于函数调用都仅限于函数调用栈这个概念上,但对于其中的详细结构却了解不多。所以用gdb调试一个简单的例子,一探究竟。

函数调用栈的结构(以下简称栈)

栈包含以下作用:

  • 存储函数返回地址。
  • 保存调用者的rbp。
  • 保存局部变量。
  • 为被调用函数预留返回值内存空间。
  • 向被调用函数传递参数。

每个函数在执行时都需要一段内存来保存上述的内容,这段内存被称为函数的“栈帧

一般CPU中包含两个与栈相关的寄存器:

  • rsp:始终指向整个函数调用栈的栈顶
  • rbp:指向栈帧的开始位置

但存储函数返回地址的内存单元的地址并不在rbp~rsp之间。而是在0x8(%rbp)的位置

栈的工作原理

栈是一种后进先出(LIFO)的结构,在Linux AMD64环境中,golang栈由高地址向低地址生长。

当发生函数调用时,由于调用者未执行完成,栈帧还要继续使用,不可以被调用者覆盖,所以要在当前栈顶外继续为被调用者划分栈帧。这个操作叫做压栈(push),并向外移动rbp、rsp,栈空间随之增长。

与之对应的,当被调用者执行完成时,其栈帧就会被收回。这个操作叫出栈(pop),并向内移动rbp、rsp,栈空间随之缩小。调用者继续执行

栈空间的生长和收缩是由编译器生成的代码自动管理的的,与堆不同(手动或者gc)。

流程图

先给出流程图,好心里有个数:

代码及编译

指定 -gcflags="-N -l" 是为了关闭编译器优化。

go build -gcflags="-N -l" -o test test.go

为了方便查看内存内容,将变量都声明为了int64。

package main

func main() {
caller()
} func caller() {
var a int64 = 1
var b int64 = 2
callee(a, b)
} func callee(a, b int64) (int64, int64) {
c := a + 5
d := b * 4
return c, d
}

反汇编代码

反汇编的内容为:

  • 指令地址
  • 指令相对于当前函数起始位置以字节为单位的偏移
  • 指令内容
gdb test

断点打在caller方法上,因为主要的研究对象是caller与callee。

(gdb) b main.caller
Breakpoint 1 at 0x458360: file /root/study/test.go, line 7.

输入run 运行程序。

caller函数反汇编,/s 表示将源代码与汇编代码一起显示,如不指定则只显示汇编代码。

可使用step(s)按源码级别调试,或者stepi(si)按汇编指令级别调试。

下面是caller、callee的反汇编代码和源码注释,还有与之相关的内存结构对照表。

(gdb) disassemble /s
Dump of assembler code for function main.caller:
7 func caller() {
=> 0x0000000000458360 <+0>: mov %fs:0xfffffffffffffff8,%rcx # 将当前g的指针存入rcx
0x0000000000458369 <+9>: cmp 0x10(%rcx),%rsp # 比较g.stackguard0和rsp
0x000000000045836d <+13>: jbe 0x4583b0 <main.caller+80> # 如果rsp较小,表示栈有溢出风险,调用runtime.morestack_noctxt
0x000000000045836f <+15>: sub $0x38,%rsp # 划分0x38字节的栈空间
0x0000000000458373 <+19>: mov %rbp,0x30(%rsp) # 保存调用者main的rbp
0x0000000000458378 <+24>: lea 0x30(%rsp),%rbp # 设置此函数栈的rbp 8 var a int64 = 1
0x000000000045837d <+29>: movq $0x1,0x28(%rsp) # 局部变量a入栈 9 var b int64 = 2
0x0000000000458386 <+38>: movq $0x2,0x20(%rsp) # 局部变量b入栈 10 callee(a, b)
0x000000000045838f <+47>: mov 0x28(%rsp),%rax # 读取第一个参数到rax
0x0000000000458394 <+52>: mov %rax,(%rsp) # callee第一个参数入栈
0x0000000000458398 <+56>: movq $0x2,0x8(%rsp) # callee第二个参数入栈
0x00000000004583a1 <+65>: callq 0x4583c0 <main.callee> # 调用callee 11 }
0x00000000004583a6 <+70>: mov 0x30(%rsp),%rbp # rbp还原为main的rbp
0x00000000004583ab <+75>: add $0x38,%rsp # rsp还原为main的rsp
0x00000000004583af <+79>: retq # 返回
<autogenerated>:
0x00000000004583b0 <+80>: callq 0x451b30 <runtime.morestack_noctxt>
0x00000000004583b5 <+85>: jmp 0x458360 <main.caller>
End of assembler dump.

callee函数反汇编

(gdb) s  # 单步调试进入的callee函数
main.callee (a=1, b=2, ~r2=824634073176, ~r3=0) at /root/study/test.go:13
13 func callee(a, b int64) (int64, int64) { (gdb) disassemble /s
Dump of assembler code for function main.callee:
13 func callee(a, b int64) (int64, int64) {
=> 0x00000000004583c0 <+0>: sub $0x18,%rsp # 划分0x18大小的栈
0x00000000004583c4 <+4>: mov %rbp,0x10(%rsp) # 保存调用者caller的rbp
0x00000000004583c9 <+9>: lea 0x10(%rsp),%rbp # 设置此函数栈的rbp
0x00000000004583ce <+14>: movq $0x0,0x30(%rsp) # 初始化第一个返回值为0
0x00000000004583d7 <+23>: movq $0x0,0x38(%rsp) # 初始化第二个返回值为0 14 c := a + 5
0x00000000004583e0 <+32>: mov 0x20(%rsp),%rax # 从内存中获取第一个参数值到rax
0x00000000004583e5 <+37>: add $0x5,%rax # rax+=5
0x00000000004583e9 <+41>: mov %rax,0x8(%rsp) # 局部变量c入栈 15 d := b * 4
0x00000000004583ee <+46>: mov 0x28(%rsp),%rax # 从内存中获取第二个参数值到rax
0x00000000004583f3 <+51>: shl $0x2,%rax # rax*=2
0x00000000004583f7 <+55>: mov %rax,(%rsp) # 局部变量d入栈 16 return c, d
0x00000000004583fb <+59>: mov 0x8(%rsp),%rax # 局部变量c的值存储到rax
0x0000000000458400 <+64>: mov %rax,0x30(%rsp) # 将c赋值给第一个返回值
0x0000000000458405 <+69>: mov (%rsp),%rax # 局部变量d的值存储到rax
0x0000000000458409 <+73>: mov %rax,0x38(%rsp) # 将d赋值给第二个返回值 17 }
0x000000000045840e <+78>: mov 0x10(%rsp),%rbp # rbp还原为caller的rbp
0x0000000000458413 <+83>: add $0x18,%rsp # rsp还原为caller的rsp
0x0000000000458417 <+87>: retq # 返回 End of assembler dump.

内存结构对照表

一些结论

  • golang通过rsp加偏移量访问栈帧。
  • 被调用者的入参是位于调用者的栈中。
  • caller会为有返回值的callee,在栈中预留返回值内存空间。而callee在执行return时,会将返回值写入caller在栈中预留的空间。
  • 意外收获是了解了多值返回的实现。

Golang源码学习:使用gdb调试探究Golang函数调用栈结构的更多相关文章

  1. Golang源码学习:调度逻辑(二)main goroutine的创建

    接上一篇继续分析一下runtime.newproc方法. 函数签名 newproc函数的签名为 newproc(siz int32, fn *funcval) siz是传入的参数大小(不是个数):fn ...

  2. nginx源码分析--使用GDB调试(strace、 pstack )

    nginx源码分析--使用GDB调试(strace.  pstack ) http://blog.csdn.net/scdxmoe/article/details/49070577

  3. BIND9源码学习笔记1---gdb调试篇

    学习bind9源码之前,首先要知道如何用gdb来调试bind.BIND9的源码我是先看代码弄懂它的架构,像什么event-drive,epoll等, 再去看它的业务流程.看业务流程的时候要追踪它的数据 ...

  4. Golang源码学习:调度逻辑(一)初始化

    本文所使用的Golang为1.14,dlv为1.4.0. 源代码 package main import "fmt" func main() { fmt.Println(" ...

  5. Golang源码学习:调度逻辑(三)工作线程的执行流程与调度循环

    本文内容主要分为三部分: main goroutine 的调度运行 非 main goroutine 的退出流程 工作线程的执行流程与调度循环. main goroutine 的调度运行 runtim ...

  6. Golang源码学习:调度逻辑(四)系统调用

    Linux系统调用 概念:系统调用为用户态进程提供了硬件的抽象接口.并且是用户空间访问内核的唯一手段,除异常和陷入外,它们是内核唯一的合法入口.保证系统的安全和稳定. 调用号:在Linux中,每个系统 ...

  7. Golang源码学习:监控线程

    监控线程是在runtime.main执行的时候在系统栈中创建的,监控线程与普通的工作线程区别在于,监控线程不需要绑定p来运行. 监控线程的创建与启动 简单的调用图 先给出个简单的调用图,好心里有数,逐 ...

  8. Golang源码探索(一) 编译和调试源码(转)

    GO可以说是近几年最热门的新兴语言之一了, 一般人看到分布式和大数据就会想到GO,这个系列的文章会通过研究golang的源代码来分析内部的实现原理,和CoreCLR不同的是, golang的源代码已经 ...

  9. Vue源码学习(一):调试环境搭建

    最近开始学习Vue源码,第一步就是要把调试环境搭好,这个过程遇到小坑着实费了点功夫,在这里记下来 一.调试环境搭建过程 1.安装node.js,具体不展开 2.下载vue项目源码,git或svn等均可 ...

随机推荐

  1. 第八章服务器raid及配置实战

      版本 特点 磁盘个数 可用空间 故障磁盘数 应用环境 RAID0 读写速度快,数据容易丢失 两个 全部 一块 测试,临时性 RAID1 读写速度慢,数据可靠 至少两个,可以2的倍数 总容量的一半 ...

  2. HDU 5954 Do Not Pour Out

    #include<bits/stdc++.h> using namespace std; #define rep(i,a,b) for(int i=a;i<=b;++i) #defi ...

  3. 【抓包工具】tcpdump

    tcpdump - dump traffic on a network 根据使用者的定义对网络上的数据包进行截获的包分析工具. tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析.它支 ...

  4. for-loop 与 json.Unmarshal 性能分析概要

    原文地址:for-loop 与 json.Unmarshal 性能分析概要 前言 在项目中,常常会遇到循环交换赋值的数据处理场景,尤其是 RPC,数据交互格式要转为 Protobuf,赋值是无法避免的 ...

  5. Nodejs的介绍

    Nodejs的介绍 Node.js的是建立在Chrome的JavaScript的运行时,可方便地构建快速,可扩展的网络应用程序的平台.Node.js使用事件驱动,非阻塞I/O模型,轻量.高效,可以完美 ...

  6. CF思维联系– Codeforces-990C Bracket Sequences Concatenation Problem(括号匹配+模拟)

    ACM思维题训练集合 A bracket sequence is a string containing only characters "(" and ")" ...

  7. codeforce 1311 C. Perform the Combo 前缀和

    You want to perform the combo on your opponent in one popular fighting game. The combo is the string ...

  8. codeforce 270C Magical Boxes

    C. Magical Boxes Emuskald is a well-known illusionist. One of his trademark tricks involves a set of ...

  9. DNS 处理模块 dnspython

    简介: dnspython (http://www.dnspython.org/)是Python实现一个DNS的工具包,支持所有的记录类型,可以用于查询.传输并动态更新ZONE信息. 安装 wget ...

  10. 跟哥一起学Python(1) - python简介

    01—写在前面 我做了十几年的程序猿,码过代码.带过项目.做过产品经理.做过软件架构师.因为我是做通信设备软件的,面向底层操作系统,所以我的工作主要以C语言为主.Python在我的工作中通常用来写一些 ...