http://www.cnblogs.com/wuyisky/archive/2010/02/24/oracle_rank.html

目录
===============================================
1.使用rownum为记录排名
2.使用分析函数来为记录排名
3.使用分析函数为记录进行分组排名

一、使用rownum为记录排名:

在前面一篇《Oracle开发专题之:分析函数》,我们认识了分析函数的基本应用,现在我们再来考虑下面几个问题:

对所有客户按订单总额进行排名
按区域和客户订单总额进行排名
找出订单总额排名前13位的客户
找出订单总额最高、最低的客户
找出订单总额排名前25%的客户

按照前面第一篇文章的思路,我们只能做到对各个分组的数据进行统计,如果需要排名的话那么只需要简单地加上rownum不就行了吗?事实情况是否如此想象般简单,我们来实践一下。

【1】测试环境:

SQL> desc user_order;
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 REGION_ID                                          NUMBER(2)
 CUSTOMER_ID                                  NUMBER(2)
 CUSTOMER_SALES                          NUMBER

【2】测试数据:

SQL> select * from user_order order by customer_sales;

REGION_ID CUSTOMER_ID CUSTOMER_SALES
---------- ----------- --------------
         5           1              151162
        10          29             903383
         6           7              971585
        10          28            986964
         9          21           1020541
         9          22           1036146
         8          16           1068467
         6           8            1141638
         5           3            1161286
         5           5            1169926
         8          19           1174421
         7          12           1182275
         7          11           1190421
         6          10           1196748
         6           9            1208959
        10          30          1216858
         5             2                1224992
           9             24              1224992
           9             23              1224992
           8
          18           1253840
         7          15           1255591
         7          13           1310434
        10          27          1322747
         8          20           1413722
         6           6            1788836
        10          26          1808949
         5           4            1878275
         7          14           1929774
         8          17           1944281
         9          25           2232703

30 rows selected.

注意这里有3条记录的订单总额是一样的。假如我们现在需要筛选排名前12位的客户,如果使用rownum会有什么样的后果呢?

SQL> select rownum, t.*
  2    from (select * 
  3            from user_order
  4           order by customer_sales desc) t
  5   where rownum <= 12
  6   order by customer_sales desc;

ROWNUM  REGION_ID CUSTOMER_ID CUSTOMER_SALES
---------- ---------- ----------- --------------
         1          9                 25        2232703
         2          8                 17        1944281
         3          7                 14        1929774
         4          5                   4        1878275
         5         10                26        1808949
         6          6                   6        1788836
         7          8                 20        1413722
         8         10                27        1322747
         9          7                13        1310434
        10          7               15        1255591
        11          8               18        1253840
          12             5                     2          1224992

12 rows selected.

很明显假如只是简单地按rownum进行排序的话,我们漏掉了另外两条记录(参考上面的结果)。

二、使用分析函数来为记录排名:

针对上面的情况,Oracle从8i开始就提供了3个分析函数:rand,dense_rank,row_number来解决诸如此类的问题,下面我们来看看这3个分析函数的作用以及彼此之间的区别:

Rank,Dense_rank,Row_number函数为每条记录产生一个从1开始至N的自然数,N的值可能小于等于记录的总数。这3个函数的唯一区别在于当碰到相同数据时的排名策略。

ROW_NUMBER

Row_number函数返回一个唯一的值,当碰到相同数据时,排名按照记录集中记录的顺序依次递增。

DENSE_RANK
Dense_rank函数返回一个唯一的值,除非当碰到相同数据时,此时所有相同数据的排名都是一样的。

RANK
Rank函数返回一个唯一的值,除非遇到相同的数据时,此时所有相同数据的排名是一样的,同时会在最后一条相同记录和下一条不同记录的排名之间空出排名。

这样的介绍有点难懂,我们还是通过实例来说明吧,下面的例子演示了3个不同函数在遇到相同数据时不同排名策略:

SQL> select region_id, customer_id, sum(customer_sales) total,
  2         rank() over(order by sum(customer_sales) desc) rank,
  3         dense_rank() over(order by sum(customer_sales) desc) dense_rank,
  4         row_number() over(order by sum(customer_sales) desc) row_number
  5    from user_order
  6   group by region_id, customer_id;

REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER
---------- ----------- ---------- ---------- ---------- ----------
            
         8          18                1253840         11         11         11
         5           2                 1224992         12         12         12
         9          23                1224992         12         12         13
         9          24                1224992         12         12         14
        10          30               1216858         15           13            15

30 rows selected.

请注意上面的绿色高亮部分,这里生动的演示了3种不同的排名策略:

①对于第一条相同的记录,3种函数的排名都是一样的:12

②当出现第二条相同的记录时,Rank和Dense_rank依然给出同样的排名12;而row_number则顺延递增为13,依次类推至第三条相同的记录

③当排名进行到下一条不同的记录时,可以看到Rank函数在12和15之间空出了13,14的排名,因为这2个排名实际上已经被第二、三条相同的记录占了。而Dense_rank则顺序递增。row_number函数也是顺序递增

比较上面3种不同的策略,我们在选择的时候就要根据客户的需求来定夺了:

假如客户就只需要指定数目的记录,那么采用row_number是最简单的,但有漏掉的记录的危险

假如客户需要所有达到排名水平的记录,那么采用rankdense_rank是不错的选择。至于选择哪一种则看客户的需要,选择dense_rank或得到最大的记录

三、使用分析函数为记录进行分组排名:

上面的排名是按订单总额来进行排列的,现在跟进一步:假如是为各个地区的订单总额进行排名呢?这意味着又多了一次分组操作:对记录按地区分组然后进行排名。幸亏Oracle也提供了这样的支持,我们所要做的仅仅是在over函数中order by的前面增加一个分组子句:partition by region_id。

SQL> select region_id, customer_id, 
               sum(customer_sales) total,
  2         rank() over(partition by region_id
                        order by sum(customer_sales) desc) rank,
  3         dense_rank() over(partition by region_id
                        order by sum(customer_sales) desc) dense_rank,
  4         row_number() over(partition by region_id
                        order by sum(customer_sales) desc) row_number

5    from user_order
  6   group by region_id, customer_id;

REGION_ID CUSTOMER_ID      TOTAL       RANK DENSE_RANK ROW_NUMBER
---------- ----------- ---------- ---------- ---------- ----------
         5           4                1878275          1          1          1
         5           2                1224992          2          2          2
         5           5                1169926          3          3          3
         6           6                1788836          1          1          1
         6           9                1208959          2          2          2
         6          10               1196748          3          3          3

30 rows selected.

现在我们看到的排名将是基于各个地区的,而非所有区域的了!Partition by 子句在排列函数中的作用是将一个结果集划分成几个部分,这样排列函数就能够应用于这各个子集。

前面我们提到的5个问题已经解决了2个了(第1,2),剩下的3个问题(Top/Bottom N,First/Last, NTile)会在下一篇讲解。

oracle分析函数Rank, Dense_rank, row_number的更多相关文章

  1. [转]oracle分析函数Rank, Dense_rank, row_number

    oracle分析函数Rank, Dense_rank, row_number 分析函数2(Rank, Dense_rank, row_number)   目录 ==================== ...

  2. Oracle分析函数 — rank, dense_rank, row_number用法

    本文通过例子演示了Oracle分析函数 —— rank, dense_rank, row_number的用法. //首先建score表 create table score( course   nva ...

  3. oracle sql rank dense_rank row_number fisrt last

    測試表emp

  4. Oracle 的开窗函数 rank,dense_rank,row_number

    1.开窗函数和分组函数的区别 分组函数是指按照某列或者某些列分组后进行某种计算,比如计数,求和等聚合函数进行计算. 开窗函数是指基于某列或某些列让数据有序,数据行数和原始数据数相同,依然能曾现个体数据 ...

  5. rank,dense_rank,row_number使用和区别

    rank,dense_rank,row_number区别 一:语法(用法):     rank() over([partition by col1] order by col2)      dense ...

  6. 【DB2】DB2中rank(),dense_rank(),row_number()的用法

    1.准备测试数据 DROP TABLE oliver_1; ),SUB_NO ),SCORE int); ,,); ,,); ,,); ,,); ,,); ,,); 2.详解rank(),dense_ ...

  7. Oracle分析函数-keep(dense_rank first/last)

    select * from criss_sales where dept_id = 'D02' order by sale_date ; 此时有个新需求,希望查看部门 D02 内,销售记录时间最早,销 ...

  8. [z]一个SQL语句分清楚RANK(),DENSE_RANK(),ROW_NUMBER()三个排序的不同

    转自:http://blog.csdn.net/s630730701/article/details/51902762 在SCOTT用户下,执行下面SQL; SELECT s.deptno,s.ena ...

  9. rank() | dense_rank() | row_number() over(PARTITION BY sex order by age desc ) 的区别

    1.row_num() over()函数:根据某个字段排序后编号1,2,3.. select *,ROW_NUMBER() over ( order by majorid) as numfrom St ...

随机推荐

  1. java 8中 predicate chain的使用

    目录 简介 基本使用 使用多个Filter 使用复合Predicate 组合Predicate Predicate的集合操作 总结 java 8中 predicate chain的使用 简介 Pred ...

  2. mysql-管理命令【创建用户、授权、修改密码、删除用户和授权、忘记root密码】

    一.创建用户 命令: CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 关键参数说明: username - 创建登录用户名, host ...

  3. 【Linux网络基础】网络子网划分基础知识(IP地址,子网)

    一. IP地址分类与子网划分基础 1. 什么是IP地址? 常见的ip地址版本为ipv4, ipv6 32位 4 * 8=32位. 32位二进制数字序列组成的数字序列   点分十进制 采用点将32位数字 ...

  4. BigDecimal 01 - 在JAVA中怎么比较Double类型数据的大小?

    2019独角兽企业重金招聘Python工程师标准>>>  非整型数,运算由于精度问题,可能会有误差,建议使用BigDecimal类型! double a = 0.001;  doub ...

  5. 深入实践Spring Boot1.4 运行与发布

    1.4 运行与发布 本章实例工程的完整代码可以使用IDEA直接从GitHub的https://github.com/chen-fromsz/spring-boot-hello.git中检出,如图1-1 ...

  6. 批量将制定文件夹下的全部Excel文件导入微软SQL数据库

    以下代码将c:\cs\文件夹下的全部Excle中数据导入到SQL数据库 declare @query vARCHAR(1000) declare @max1 int declare @count1 i ...

  7. [Docker]compose一键部署nginx

    Docker-compose部署nginx 创建配置文件 mkdir -p /usr/local/docker/nginx cat > /usr/local/docker/nginx/docke ...

  8. 数组输出黑科技----fwrite()

    fwrite(const void*buffer,size_t size,size_t count,FILE*stream); (1)buffer:是一个指针,对fwrite来说,是要输出数据的地址. ...

  9. CF1328E Tree Queries

    CF1328E Tree Queries 应该还是比较妙的 题意 给你一个树,然后多次询问 每次询问给出一堆节点,问你是否能找到一个从根出发的链,是的对于给出的每个节点,都能找出链上的点,是的他们的距 ...

  10. python(类多态)

    一.多态 (以封装和继承为前提)不同的子类调用相同的方法,产生不同的结果 class Dog(): def __init__(self,name): self.name = name def game ...