题目大意:从n个数里边选n/2个数,问和最大是多少。

题解:这是一个比较有意思的DP,定义状态dp[i][1],表示选了第i个数的最优状态,dp[i][0]表示没有选第i个数的最优状态。

状态是如何转移的呢?

1  2  3  4  5  6  7....

假设考虑到第7个数,前7个数我们要选7/2=3个数。

    如果我们选了第7个数那么我们 只需要从前边再选2个数,我们可以从前5个数里边选2个,也可以从前4个数里边选2个,所以dp[i][1]=max({dp[i-2][1],dp[i-2][0],dp[i-3][1],dp[i-3][0]})+arr[i]。  

    如果我们不选第7个数,那就相当于从前6个数选3个喽,直接继承i-1就可以了。dp[i][0]=max(dp[i-1][0],dp[i-1][1])

假设我们考虑到第6个数,前6个数我们要选3个。

    如果第6个选了,那只能从前4个里边选2个了,不能在往前了,因为3/2=1了。。。所以dp[i][1]=max(dp[i-2][1],dp[i-2][0])+arr[i]。

    如果第6个不选,也就说要从前5个里边选3个了,假设第5个不选,从前4个里边选3个肯定是不满足条件的,所以第5个必须选,然后在加上第四个不选的情况,所以转移方程为dp[i][0]=arr[i-1]+dp[i-2][0]。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=2e5+;
ll dp[N][];
ll arr[N];
int main(){
ll n;
cin>>n;
for(ll i=;i<=n;i++) cin>>arr[i];
dp[][]=arr[];
dp[][]=arr[];
for(ll i=;i<=n;i++){
if(i&){
dp[i][]=max({dp[i-][],dp[i-][],dp[i-][],dp[i-][]})+arr[i];
dp[i][]=max(dp[i-][],dp[i-][]);
}
else {
dp[i][]=max(dp[i-][],dp[i-][])+arr[i];
dp[i][]=arr[i-]+dp[i-][];
}
}
cout<<max(dp[n][],dp[n][])<<endl;
return ;
}

F - Select Half dp的更多相关文章

  1. ABC 162 F Select Half dp 贪心

    LINK:Select Half 考试的时候调了一个小时给调自闭了 原来是dp的姿势不太对. 首先 容易发现 奇数最多空2个位置 偶数最多空1一个位置 然后 设f[i][j][k]表示第i个数选了没有 ...

  2. Educational Codeforces Round 61 F 思维 + 区间dp

    https://codeforces.com/contest/1132/problem/F 思维 + 区间dp 题意 给一个长度为n的字符串(<=500),每次选择消去字符,连续相同的字符可以同 ...

  3. codeforces 825F F. String Compression dp+kmp找字符串的最小循环节

    /** 题目:F. String Compression 链接:http://codeforces.com/problemset/problem/825/F 题意:压缩字符串后求最小长度. 思路: d ...

  4. hdu 4389 X mod f(x) 数位DP

    思路: 每次枚举数字和也就是取模的f(x),这样方便计算. 其他就是基本的数位Dp了. 代码如下: #include<iostream> #include<stdio.h> # ...

  5. HDU4389:X mod f(x)(数位DP)

    Problem Description Here is a function f(x): int f ( int x ) { if ( x == 0 ) return 0; return f ( x ...

  6. Codeforces Gym 100002 Problem F "Folding" 区间DP

    Problem F "Folding" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/ ...

  7. Codeforces Round #471 (Div. 2) F. Heaps(dp)

    题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...

  8. F(x) 数位dp

    Problem Description For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight ...

  9. HDU 4734 - F(x) - [数位DP][memset优化]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4734 Time Limit: 1000/500 MS (Java/Others) Memory Lim ...

随机推荐

  1. ORM常用字段及方式

    创建小型数据库 模型层 ORM常用字段 AutoField int自增列,必须填入参数 primary_key=True.当model中如果没有自增列,则自动会创建一个列名为id的列. Integer ...

  2. SpringFramework之IoC容器初始化

    分析例子 启动类 Application,使用的是ClassPathXmlApplicationContext来加载xml文件 /** * @author jianw.li * @date 2020/ ...

  3. 解决使用requests_html模块,req.html.render()下载chromium速度慢问题

    1.第一步,代码如下: from requests_html import HTMLSession url="https://www.baidu.com/" headers={ & ...

  4. windows10远程桌面,出现“出现身份验证错误 要求的函数不受支持...”等错误解决方法

    windows家庭普通版,更新补丁后无法远程连接windows server2012,出现以下报错: 解决方法: 1.win + R打开运行,输入 regedit,回车进入注册表 2.找到以下路径 \ ...

  5. API开放平台接口设计-------基于OAuth2.0协议方式

    1,简介OAuth http://www.ruanyifeng.com/blog/2019/04/oauth_design.html OAuth 是什么? http://www.ruanyifeng. ...

  6. iOS 图片加载速度优化

    FastImageCache 是 Path 团队开发的一个开源库,用于提升图片的加载和渲染速度,让基于图片的列表滑动起来更顺畅,来看看它是怎么做的. 一.优化点 iOS 从磁盘加载一张图片,使用 UI ...

  7. django中 对Mysql数据库的建表

    Django操作Mysql数据库: 1.1 在settings中,配置数据库相关参数,所以无需修改,这里我们看一下: DATABASES = { 'default': { # 这里可以指定使用的数据库 ...

  8. C - 啥~ 渣渣也想找玩数字 HDU - 2141(有序序列枚举 + 二分优化查找)

    题目描述 可爱的演演又来了,这次他想问渣渣一题... 如果给你三个数列 A[],B[],C[],请问对于给定的数字 X,能否从这三个数列中各选一个,使得A[i]+B[j]+C[k]=X? 输入 多组数 ...

  9. 1016 Phone Bills (25 分)

    A long-distance telephone company charges its customers by the following rules: Making a long-distan ...

  10. 数据挖掘-K-近邻算法

    数据挖掘-K-近邻算法 目录 数据挖掘-K-近邻算法 1. K-近邻算法概述 1.1 K-近邻算法介绍 1.1.1 KNN算法作用 1.1.2 KNN 算法思想 1.1.3 KNN算法特点 1.2 K ...