目标

在本章中,您将学习

  • 使用模板匹配在图像中查找对象
  • 你将看到以下功能:cv.matchTemplate(),cv.minMaxLoc()

理论

模板匹配是一种用于在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV带有一个函数cv.matchTemplate()。

它只是将模板图​​像滑动到输入图像上(就像在2D卷积中一样),然后在模板图像下比较模板和输入图像的拼图。

OpenCV中实现了几种比较方法。(您可以检查文档以了解更多详细信息)。它返回一个灰度图像,其中每个像素表示该像素的邻域与模板匹配的程度。

如果输入图像的大小为(WxH),而模板图像的大小为(wxh),则输出图像的大小将为(W-w 1,H-h 1)。得到结果后,可以使用cv.minMaxLoc()函数查找最大/最小值在哪。将其作为矩形的左上角,并以(w,h)作为矩形的宽度和高度。该矩形是您模板的区域。

注意

如果使用cv.TM_SQDIFF作为比较方法,则最小值提供最佳匹配。

OpenCV中的模板匹配

作为示例,我们将在梅西的照片中搜索他的脸。所以我创建了一个模板,如下所示:



我们将尝试所有比较方法,以便我们可以看到它们的结果如何:

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img2 = img.copy()
template = cv.imread('template.jpg',0)
w, h = template.shape[::-1]
# 列表中所有的6种比较方法
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
method = eval(meth)
# 应用模板匹配
res = cv.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
# 如果方法是TM_SQDIFF或TM_SQDIFF_NORMED,则取最小值
if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] w, top_left[1] h)
cv.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()

查看以下结果:

  • cv.TM_CCOEFF

  • cv.TM_CCOEFF_NORMED

  • cv.TM_CCORR

  • cv.TM_CCORR_NORMED

  • cv.TM_SQDIFF

  • cv.TM_SQDIFF_NORMED

您会看到,使用cv.TM_CCORR的结果并不理想。

多对象的模板匹配

在上一节中,我们在图像中搜索了梅西的脸,该脸在图像中仅出现一次。假设您正在搜索具有多次出现的对象,则cv.minMaxLoc()不会为您提供所有位置。在这种情况下,我们将使用阈值化。因此,在此示例中,我们将使用著名游戏Mario的屏幕截图,并在其中找到硬币。

import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
cv.rectangle(img_rgb, pt, (pt[0] w, pt[1] h), (0,0,255), 2)
cv.imwrite('res.png',img_rgb)

结果:

欢迎关注磐创博客资源汇总站:

http://docs.panchuang.net/

欢迎关注PyTorch官方中文教程站:

http://pytorch.panchuang.net/

OpenCV中文官方文档:

http://woshicver.com/

OpenCV-Python 模板匹配 | 三十一的更多相关文章

  1. Python学习(三十一)—— Django之路由系统

    转载自:http://www.cnblogs.com/liwenzhou/p/8271147.html Django的路由系统 Django 1.11版本 URLConf官方文档 URL配置(URLc ...

  2. Python学习札记(三十一) 面向对象编程 Object Oriented Program 2

    参考:类和实例 注意理解第七点. NOTE: 1.类是抽象的模板,比如Student类,实例是根据类创建出来的一个个具体的"对象",每个对象都拥有相同的方法,但各自的数据可能不同. ...

  3. Appium+python自动化(三十一)- 元芳,你怎么看? - 日志收集-logging(超详解)

    简介 生活中的日志是记录你生活的点点滴滴,让它把你内心的世界表露出来,更好的诠释自己的内心世界,而电脑里的日志是有价值的信息宝库. 日志文件是专门用于记录系统操作事件的记录文件或文件集合,操作系统有操 ...

  4. opencv MatchTemplate()模板匹配寻找最匹配部分

    通常,随着从简单的测量(平方差)到更复杂的测量(相关系数),可以获得越来越准确的匹配,然而,这同时也会以越来越大的计算量为代价.比较科学的方法是对所有这些方法多次测试实验,以便为自己的应用选择同时兼顾 ...

  5. python学习第三十一天函数的嵌套及函数的作用域

    python函数的嵌套是指在函数里面嵌套另外一个函数,可以嵌套更多,函数一旦套用了另外一个函数,他的作用域就已经形成,可以通过global关键词改变变量的作用域,下面详细说明函数的嵌套及函数的作用域 ...

  6. Python学习日记(三十一) 黏包问题

    import subprocess res = subprocess.Popen('dir',shell=True,stdout=subprocess.PIPE,stderr=subprocess.P ...

  7. 使用Python+OpenCV进行图像模板匹配(Match Template)

    2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...

  8. Python+OpenCV图像处理(九)—— 模板匹配

    百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...

  9. 模板匹配入门实践:opencv+python识别PDB板

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识 ...

随机推荐

  1. 《Java 8实战》读书笔记系列——第三部分:高效Java 8编程(四):使用新的日期时间API

    https://www.lilu.org.cn/https://www.lilu.org.cn/ 第十二章:新的日期时间API 在Java 8之前,我们常用的日期时间API是java.util.Dat ...

  2. PHP 解决对文件操作的高并发问题

    解决方案:     对文件进行加锁时,设置一个超时时间.超时设置为1ms,如果这段时间内没有获得锁,就反复获得,直到获得对文件的操作权为止.如果超市限制已到,就必须马上退出,让出锁让其他进程进行操作. ...

  3. Golang/Python/PHP带你彻底学会gRPC

    目录 一.gRPC是什么? 二.Protocol Buffers是什么? 三.需求:开发健身房服务 四.最佳实践 Golang 1. 安装protoc工具 2. 安装protoc-gen-go 3. ...

  4. CentOS7 部署K8S集群,最新版1.17.3-0

    小白在网上找了很多关于k8s集群部署的文档,但是版本老旧,到处踩坑,终于部署成功,记录下过程. 一.准备工作 虚拟机:VMware® Workstation 15 Pro Xhell 6:Xshell ...

  5. python xlwings Excel 内容截图

    import xlwings as xw from PIL import ImageGrab def excel_save_img(path, sheet=0, img_name="1&qu ...

  6. Data Vault 简介

    Data Vault 简介 Data Vault 2.0 不仅是建模技术,也提供了一整套数据仓库项目的方法论.它能提供一套非常可行的方案来满足数据仓库项目中对于历史轨迹和审核两个方面的需求. 多年来, ...

  7. Springboot与Maven多环境配置文件夹解决方案

    Profile用法 我们在application.yml中为jdbc.name赋予一个值,这个值为一个变量 jdbc: username: ${jdbc.username} Maven中的profil ...

  8. [转] SQL Server 数据库性能优化

    分析比较执行时间计划读取情况 1. 查看执行时间和cpu set statistics time on select * from Bus_DevHistoryData set statistics ...

  9. Django中使用CORS实现跨域请求

    跨域请求: ​    请求url包含协议.网址.端口,任何一种不同都是跨域请求. 1.安装cors模块 pip install django-cors-headers2.添加应用 INSTALLED_ ...

  10. 解决unrecognized import path "xxx"

    $ export GOPROXY=https://goproxy.io 环境变量配置上面这句即可 https://goproxy.io 是一个goproxy.io这个开源项目提供的公开代理服务. 使用 ...