OpenCV-Python 模板匹配 | 三十一
目标
在本章中,您将学习
- 使用模板匹配在图像中查找对象
- 你将看到以下功能:cv.matchTemplate(),cv.minMaxLoc()
理论
模板匹配是一种用于在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV带有一个函数cv.matchTemplate()。
它只是将模板图像滑动到输入图像上(就像在2D卷积中一样),然后在模板图像下比较模板和输入图像的拼图。
OpenCV中实现了几种比较方法。(您可以检查文档以了解更多详细信息)。它返回一个灰度图像,其中每个像素表示该像素的邻域与模板匹配的程度。
如果输入图像的大小为(WxH),而模板图像的大小为(wxh),则输出图像的大小将为(W-w 1,H-h 1)。得到结果后,可以使用cv.minMaxLoc()函数查找最大/最小值在哪。将其作为矩形的左上角,并以(w,h)作为矩形的宽度和高度。该矩形是您模板的区域。
注意
如果使用cv.TM_SQDIFF作为比较方法,则最小值提供最佳匹配。
OpenCV中的模板匹配
作为示例,我们将在梅西的照片中搜索他的脸。所以我创建了一个模板,如下所示:

我们将尝试所有比较方法,以便我们可以看到它们的结果如何:
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img = cv.imread('messi5.jpg',0)
img2 = img.copy()
template = cv.imread('template.jpg',0)
w, h = template.shape[::-1]
# 列表中所有的6种比较方法
methods = ['cv.TM_CCOEFF', 'cv.TM_CCOEFF_NORMED', 'cv.TM_CCORR',
'cv.TM_CCORR_NORMED', 'cv.TM_SQDIFF', 'cv.TM_SQDIFF_NORMED']
for meth in methods:
img = img2.copy()
method = eval(meth)
# 应用模板匹配
res = cv.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv.minMaxLoc(res)
# 如果方法是TM_SQDIFF或TM_SQDIFF_NORMED,则取最小值
if method in [cv.TM_SQDIFF, cv.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] w, top_left[1] h)
cv.rectangle(img,top_left, bottom_right, 255, 2)
plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()
查看以下结果:
- cv.TM_CCOEFF

cv.TM_CCOEFF_NORMED

cv.TM_CCORR

cv.TM_CCORR_NORMED

cv.TM_SQDIFF

cv.TM_SQDIFF_NORMED

您会看到,使用cv.TM_CCORR的结果并不理想。
多对象的模板匹配
在上一节中,我们在图像中搜索了梅西的脸,该脸在图像中仅出现一次。假设您正在搜索具有多次出现的对象,则cv.minMaxLoc()不会为您提供所有位置。在这种情况下,我们将使用阈值化。因此,在此示例中,我们将使用著名游戏Mario的屏幕截图,并在其中找到硬币。
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt
img_rgb = cv.imread('mario.png')
img_gray = cv.cvtColor(img_rgb, cv.COLOR_BGR2GRAY)
template = cv.imread('mario_coin.png',0)
w, h = template.shape[::-1]
res = cv.matchTemplate(img_gray,template,cv.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
cv.rectangle(img_rgb, pt, (pt[0] w, pt[1] h), (0,0,255), 2)
cv.imwrite('res.png',img_rgb)
结果:

欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 模板匹配 | 三十一的更多相关文章
- Python学习(三十一)—— Django之路由系统
转载自:http://www.cnblogs.com/liwenzhou/p/8271147.html Django的路由系统 Django 1.11版本 URLConf官方文档 URL配置(URLc ...
- Python学习札记(三十一) 面向对象编程 Object Oriented Program 2
参考:类和实例 注意理解第七点. NOTE: 1.类是抽象的模板,比如Student类,实例是根据类创建出来的一个个具体的"对象",每个对象都拥有相同的方法,但各自的数据可能不同. ...
- Appium+python自动化(三十一)- 元芳,你怎么看? - 日志收集-logging(超详解)
简介 生活中的日志是记录你生活的点点滴滴,让它把你内心的世界表露出来,更好的诠释自己的内心世界,而电脑里的日志是有价值的信息宝库. 日志文件是专门用于记录系统操作事件的记录文件或文件集合,操作系统有操 ...
- opencv MatchTemplate()模板匹配寻找最匹配部分
通常,随着从简单的测量(平方差)到更复杂的测量(相关系数),可以获得越来越准确的匹配,然而,这同时也会以越来越大的计算量为代价.比较科学的方法是对所有这些方法多次测试实验,以便为自己的应用选择同时兼顾 ...
- python学习第三十一天函数的嵌套及函数的作用域
python函数的嵌套是指在函数里面嵌套另外一个函数,可以嵌套更多,函数一旦套用了另外一个函数,他的作用域就已经形成,可以通过global关键词改变变量的作用域,下面详细说明函数的嵌套及函数的作用域 ...
- Python学习日记(三十一) 黏包问题
import subprocess res = subprocess.Popen('dir',shell=True,stdout=subprocess.PIPE,stderr=subprocess.P ...
- 使用Python+OpenCV进行图像模板匹配(Match Template)
2017年9月22日 BY 蓝鲸 LEAVE A COMMENT 本篇文章介绍使用Python和OpenCV对图像进行模板匹配和识别.模板匹配是在图像中寻找和识别模板的一种简单的方法.以下是具体的步骤 ...
- Python+OpenCV图像处理(九)—— 模板匹配
百度百科:模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题.它是图像处理中最基本.最常用的匹配方法.模板匹配具有自身的局限性, ...
- 模板匹配入门实践:opencv+python识别PDB板
任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识 ...
随机推荐
- Particle Filter Algorithm
目录 问题提出 算法研究现状 算法原理 问题提出 在现实科研问题中,其中有很多都是非线性的.要想求得问题的解,就需要非线性的算法.所谓非线性滤波,就是基于带有噪声的观测值,估计非线性系统动态变化的状态 ...
- 进阶之路 | 奇妙的Handler之旅
前言 本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍: 我的GIthub博客 需要已经具备的知识: Handler的基本概念及使用 学习导图: 一.为什么要学习Handler? 在Andr ...
- MVC05
1. 添加搜索功能 如何实现url添加查询字符串实现查询指定项目的功能? 来到MovisController,修改Index方法如下 public ActionResult Index(string ...
- FreeModBus源码解析(1)---开篇
一.设计思想 任何通信协议的实现都是基于状态机的设计思想,就是来了一串数据判断是是干啥的在调用相应的处理函数只不过高手一般采用回调处理. 如果你熟悉了回调.源码里的状态机的实现又可以理解,那么恭喜你已 ...
- Redis面试题集锦(精选)
1.什么是 Redis?简述它的优缺点? Redis的全称是:Remote Dictionary.Server,本质上是一个Key-Value 类型的内存数据库,很像memcached,整个数据库统统 ...
- 误删除所有redo日志的一组成员的处理过程
系统中共有3个日志文件组,每个组中各有一个日志文件成员.往系统中添加一个日志文件组,组中日志文件成员数量是2.SQL> alter database add logfile group 4 (' ...
- ggplot2(11) 总结回顾&案例练习
从2020年2月20到2月27日,3月13日到2020年3月16日,学习了ggplot2:数据分析与图形艺术(哈德利·威克姆 著 统计之都 译),历时12天.另外,3月6日到3月9日参加了美赛,也用到 ...
- 036.集群网络-K8S网络模型及Linux基础网络
一 Kubernetes网络模型概述 1.1 Kubernetes网络模型 Kubernetes网络模型设计的一个基础原则是:每个Pod都拥有一个独立的IP地址,并假定所有Pod都在一个可以直接连通的 ...
- python turtle笔记
Turtle库是Python语言中一个很流行的绘制图像的函数库,想象一个小乌龟,在一个横轴为x.纵轴为y的坐标系原点,(0,0)位置开始,它根据一组函数指令的控制,在这个平面坐标系中移动,从而在它 ...
- Jmeter Agent自动化
1.打开菜单栏-附件-系统工具-任务计划程序,新建PerformanceTest目录. 2.在PerformanceTest目录下新建一个基本任务. 3.完成. 这样,当我们在使用Jmeter进行分布 ...