若$R=0$,那么显然答案为离原点最远的点到原点的距离。

否则若所有点都在原点,那么显然答案为$R$。

否则考虑二分答案$mid$,检查$mid$是否可行。

那么每个点根据对应圆交,可以覆盖圆上的一部分,每个可行方案都可以通过平移使得刚好卡住某个交点。

枚举每个交点,算出圆上$n$个位置的坐标,然后匈牙利算法判断是否存在完美匹配,时间复杂度$O(n^4\log w)$,不能承受。

注意到这个图是个稠密图,所以可以用bitset对匈牙利进行加速,做到$O(\frac{n^3}{32})$每次匹配。

另一方面,可以先枚举一个点$x$,然后再二分答案$mid$,判断是否有可行方案使得$x$刚好匹配$x$和圆的交点。

在这里,显然只需要在之前答案$ans$的基础之上往下二分,如果$ans-eps$不可行那么就没有继续二分的必要。

即:设$f[x]$表示$x$得到的最优解,若$f[x]$不是$f[1,x]$的最小值,那么就没有继续二分的必要。

考虑将读入的$n$个点随机打乱,那么$f[x]$是$f[1,x]$的最小值的概率为$\frac{1}{x}$,一共只有期望$O(\log n)$个$x$有二分的必要。

检查次数骤降为$O(n+\log n\log w)$,时间复杂度$O(\frac{(n+\log n\log w)n^3}{32})$。

注意要特判$mid$过小或者过大导致$x$与圆没有交点的情况。

#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef unsigned int U;
const int N=205,M=7;
const double eps=1e-9,pi=acos(-1.0);
int n,m,R,i,j;double lim,ans,rot[N][2],b[N][2];
int f[N];U v[M],g[N][M];
struct P{int x,y;}a[N];
inline int sgn(double x){
if(x>eps)return 1;
if(x<-eps)return -1;
return 0;
}
bool find(int x){
for(int i=0;i<=m;i++){
U t=v[i]&g[x][i];
while(t){
int j=i<<5|__builtin_ctz(t);
v[i]^=1U<<(j&31);
if(f[j]<0||find(f[j]))return f[j]=x,1;
t-=t&-t;
}
}
return 0;
}
inline bool check(int A,int B,double C){
double d=sqrt(a[A].x*a[A].x+a[A].y*a[A].y);
double l=(a[A].x*a[A].x+a[A].y*a[A].y+C*C-R*R)/(2*d);
double h=sqrt(max(C*C-l*l,0.0));
double bx=-a[A].x/d,by=-a[A].y/d;
double px=a[A].x+bx*l,py=a[A].y+by*l;
by=-by;
swap(bx,by);
bx*=h,by*=h;
if(B==0)px+=bx,py+=by;else px-=bx,py-=by;
int i,j;
b[0][0]=px,b[0][1]=py;
for(i=1;i<n;i++){
b[i][0]=px*rot[i][1]-py*rot[i][0];
b[i][1]=px*rot[i][0]+py*rot[i][1];
}
C*=C;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)g[i][j]=0;
for(j=0;j<n;j++)if(sgn((a[i].x-b[j][0])*(a[i].x-b[j][0])+(a[i].y-b[j][1])*(a[i].y-b[j][1])-C)<=0)g[i][j>>5]|=1U<<(j&31);
}
for(i=0;i<n;i++)f[i]=-1;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)v[j]=~0U;
if(!find(i))return 0;
}
return 1;
}
int main(){
scanf("%d%d",&n,&R);
m=(n-1)>>5;
for(i=0;i<n;i++)scanf("%d%d",&a[i].x,&a[i].y);
if(!R){
int ans=0;
for(i=0;i<n;i++)ans=max(ans,a[i].x*a[i].x+a[i].y*a[i].y);
double ret=sqrt(ans);
return printf("%.15f",ret),0;
}
random_shuffle(a,a+n);
for(i=1;i<n;i++){
double o=pi*2*i/n;
rot[i][0]=sin(o),rot[i][1]=cos(o);
}
for(i=0;i<n;i++){
int t=a[i].x*a[i].x+a[i].y*a[i].y;
double val;
if(t<=R)val=R-sqrt(t);else val=sqrt(t)-R;
lim=max(lim,val);
ans=max(ans,sqrt(t)+R);
}
for(i=0;i<n;i++)if(a[i].x||a[i].y)for(j=0;j<2;j++){
double l=lim,r=max(min(sqrt(a[i].x*a[i].x+a[i].y*a[i].y)+R,ans-eps),lim);
if(!check(i,j,r))continue;
while(l+eps<r){
double mid=(l+r)/2;
if(check(i,j,mid))r=ans=mid;else l=mid;
}
}
return printf("%.15f",ans),0;
}

  

BZOJ5316 : [Jsoi2018]绝地反击的更多相关文章

  1. 【BZOJ5316】[JSOI2018]绝地反击(网络流,计算几何,二分)

    [BZOJ5316][JSOI2018]绝地反击(网络流,计算几何,二分) 题面 BZOJ 洛谷 题解 很明显需要二分一个答案. 那么每个点可以确定的范围就是以当前点为圆心,二分出来的答案为半径画一个 ...

  2. LGP4518[JSOI2018]绝地反击

    题解: 只要确定了每艘飞船的就位位置,就可以用二分+网络流求得答案: 定义偏转角度$a$为离$x$正半轴逆时针最近的边的弧度,$a \in [0,\frac{2\pi}{n})$ 二分一个值,对于一个 ...

  3. 洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)

    题面 传送门 题解 调了咱一个上午-- 首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示 首先,如果我们知道这个正\(n\)边形的转角,也 ...

  4. yyb省选前的一些计划

    突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...

  5. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  6. 【LOJ】#2548. 「JSOI2018」绝地反击

    题解 卡常卡不动,我自闭了,特判交上去过了 事实上90pts= = 我们考虑二分长度,每个点能覆盖圆的是一段圆弧 然后问能不能匹配出一个正多边形来 考虑抖动多边形,多边形的一个端点一定和圆弧重合 如果 ...

  7. 【JSOI2018】绝地反击

    题面 50pts 首先当然是二分答案\(mid\), 对于每一个点,以它为圆心的圆,交上攻击轨道: 那么这个点到攻击轨迹的可达范围就是一段圆弧. 怎么求这段圆弧呢? 我们知道圆弧可以用其两端点对于圆心 ...

  8. JSOI2018简要题解

    来自FallDream的博客,未经允许,请勿转载,谢谢. 有幸拜读到贵省的题目,题的质量还不错,而且相比zjoi可做多了,简单发一下题解吧. 还有就是,怎么markdown在博客园上的代码这么丑啊 「 ...

  9. JSOI2018 简要题解

    潜入行动 复杂度分析题. 定义状态fi,j,0/1,0/1f_{i,j,0/1,0/1}fi,j,0/1,0/1​表示以iii为根子树放jjj个机器iii这个放不放,iii这个是否已放来进行dpdpd ...

随机推荐

  1. fhq treap

    学了一下,好像明白了(背下来了) 不想写main函数了 PS:这个比treap好写(私以为) #include<bits/stdc++.h> using namespace std; in ...

  2. FT View SE联合Studio 5000仿真

    ​前言:一个实际的自动化项目,都是综合性的,不仅需要PLC进行逻辑.顺序.运动等控制,还需要在上位机进行监视和操作.当没有物理PLC时,上位机软件就无法连接到实际的变量数据,开发出来的界面和功能无法验 ...

  3. Python爬虫之12306-买票器小白源码

    研究不易 import requests import re import urllib.parse import json import datetime from collections impo ...

  4. SpringMVC-简单总结

    要学习一项技术,首先要知道, 它是什么, 为什么要用它 , 它由哪些东西组成, 每个东西是干什么的, 它们怎么综合在一起的 参考博客: 平凡希: https://www.cnblogs.com/xia ...

  5. 关于this绑定的四种方式

    一.前言 我们每天都在书写着有关于this的javascript代码,似懂非懂地在用着.前阵子在看了<你不知道的JavaScript上卷>之后,也算是被扫盲了一边关于this绑定的四种方式 ...

  6. 论文翻译:Neural Networks With Few Multiplications

    目录 Abstract 1. Introduction 2.Related Work 3.Binary And Ternary Connect 3.1 BINARY CONNECT REVISITED ...

  7. OnePlus5刷机后一直检查更新

    大概是由于爱折腾,上一个手机是Nexus5,现在又是Oneplus5,闲来无事就爱刷机. 昨天看OnePlus官网的氧OS更新到Android9.0,于是又开启了刷机旅程. 显然这次没有之前那么顺利, ...

  8. Power BI行级别安全性(数据权限管理)

    自从PowerBI 的DAX 函数 支持username() 或 userprincipalname()的函数后,我们就可以在Power BI中实现根据用户的行级数据权限的控制. username() ...

  9. 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归

    ❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...

  10. 爬虫 requests模块的其他用法 抽屉网线程池回调爬取+保存实例,gihub登陆实例

    requests模块的其他用法 #通常我们在发送请求时都需要带上请求头,请求头是将自身伪装成浏览器的关键,常见的有用的请求头如下 Host Referer #大型网站通常都会根据该参数判断请求的来源 ...