BZOJ5316 : [Jsoi2018]绝地反击
若$R=0$,那么显然答案为离原点最远的点到原点的距离。
否则若所有点都在原点,那么显然答案为$R$。
否则考虑二分答案$mid$,检查$mid$是否可行。
那么每个点根据对应圆交,可以覆盖圆上的一部分,每个可行方案都可以通过平移使得刚好卡住某个交点。
枚举每个交点,算出圆上$n$个位置的坐标,然后匈牙利算法判断是否存在完美匹配,时间复杂度$O(n^4\log w)$,不能承受。
注意到这个图是个稠密图,所以可以用bitset对匈牙利进行加速,做到$O(\frac{n^3}{32})$每次匹配。
另一方面,可以先枚举一个点$x$,然后再二分答案$mid$,判断是否有可行方案使得$x$刚好匹配$x$和圆的交点。
在这里,显然只需要在之前答案$ans$的基础之上往下二分,如果$ans-eps$不可行那么就没有继续二分的必要。
即:设$f[x]$表示$x$得到的最优解,若$f[x]$不是$f[1,x]$的最小值,那么就没有继续二分的必要。
考虑将读入的$n$个点随机打乱,那么$f[x]$是$f[1,x]$的最小值的概率为$\frac{1}{x}$,一共只有期望$O(\log n)$个$x$有二分的必要。
检查次数骤降为$O(n+\log n\log w)$,时间复杂度$O(\frac{(n+\log n\log w)n^3}{32})$。
注意要特判$mid$过小或者过大导致$x$与圆没有交点的情况。
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef unsigned int U;
const int N=205,M=7;
const double eps=1e-9,pi=acos(-1.0);
int n,m,R,i,j;double lim,ans,rot[N][2],b[N][2];
int f[N];U v[M],g[N][M];
struct P{int x,y;}a[N];
inline int sgn(double x){
if(x>eps)return 1;
if(x<-eps)return -1;
return 0;
}
bool find(int x){
for(int i=0;i<=m;i++){
U t=v[i]&g[x][i];
while(t){
int j=i<<5|__builtin_ctz(t);
v[i]^=1U<<(j&31);
if(f[j]<0||find(f[j]))return f[j]=x,1;
t-=t&-t;
}
}
return 0;
}
inline bool check(int A,int B,double C){
double d=sqrt(a[A].x*a[A].x+a[A].y*a[A].y);
double l=(a[A].x*a[A].x+a[A].y*a[A].y+C*C-R*R)/(2*d);
double h=sqrt(max(C*C-l*l,0.0));
double bx=-a[A].x/d,by=-a[A].y/d;
double px=a[A].x+bx*l,py=a[A].y+by*l;
by=-by;
swap(bx,by);
bx*=h,by*=h;
if(B==0)px+=bx,py+=by;else px-=bx,py-=by;
int i,j;
b[0][0]=px,b[0][1]=py;
for(i=1;i<n;i++){
b[i][0]=px*rot[i][1]-py*rot[i][0];
b[i][1]=px*rot[i][0]+py*rot[i][1];
}
C*=C;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)g[i][j]=0;
for(j=0;j<n;j++)if(sgn((a[i].x-b[j][0])*(a[i].x-b[j][0])+(a[i].y-b[j][1])*(a[i].y-b[j][1])-C)<=0)g[i][j>>5]|=1U<<(j&31);
}
for(i=0;i<n;i++)f[i]=-1;
for(i=0;i<n;i++){
for(j=0;j<=m;j++)v[j]=~0U;
if(!find(i))return 0;
}
return 1;
}
int main(){
scanf("%d%d",&n,&R);
m=(n-1)>>5;
for(i=0;i<n;i++)scanf("%d%d",&a[i].x,&a[i].y);
if(!R){
int ans=0;
for(i=0;i<n;i++)ans=max(ans,a[i].x*a[i].x+a[i].y*a[i].y);
double ret=sqrt(ans);
return printf("%.15f",ret),0;
}
random_shuffle(a,a+n);
for(i=1;i<n;i++){
double o=pi*2*i/n;
rot[i][0]=sin(o),rot[i][1]=cos(o);
}
for(i=0;i<n;i++){
int t=a[i].x*a[i].x+a[i].y*a[i].y;
double val;
if(t<=R)val=R-sqrt(t);else val=sqrt(t)-R;
lim=max(lim,val);
ans=max(ans,sqrt(t)+R);
}
for(i=0;i<n;i++)if(a[i].x||a[i].y)for(j=0;j<2;j++){
double l=lim,r=max(min(sqrt(a[i].x*a[i].x+a[i].y*a[i].y)+R,ans-eps),lim);
if(!check(i,j,r))continue;
while(l+eps<r){
double mid=(l+r)/2;
if(check(i,j,mid))r=ans=mid;else l=mid;
}
}
return printf("%.15f",ans),0;
}
BZOJ5316 : [Jsoi2018]绝地反击的更多相关文章
- 【BZOJ5316】[JSOI2018]绝地反击(网络流,计算几何,二分)
[BZOJ5316][JSOI2018]绝地反击(网络流,计算几何,二分) 题面 BZOJ 洛谷 题解 很明显需要二分一个答案. 那么每个点可以确定的范围就是以当前点为圆心,二分出来的答案为半径画一个 ...
- LGP4518[JSOI2018]绝地反击
题解: 只要确定了每艘飞船的就位位置,就可以用二分+网络流求得答案: 定义偏转角度$a$为离$x$正半轴逆时针最近的边的弧度,$a \in [0,\frac{2\pi}{n})$ 二分一个值,对于一个 ...
- 洛谷P4518 [JSOI2018]绝地反击(计算几何+二分图+退流)
题面 传送门 题解 调了咱一个上午-- 首先考虑二分答案,那么每个点能够到达的范围是一个圆,这个圆与目标圆的交就是可行的区间,这个区间可以用极角来表示 首先,如果我们知道这个正\(n\)边形的转角,也 ...
- yyb省选前的一些计划
突然意识到有一些题目的计划,才可以减少大量查水表或者找题目的时间. 所以我决定这样子处理. 按照这个链接慢慢做. 当然不可能只做省选题了. 需要适时候夹杂一些其他的题目. 比如\(agc/arc/cf ...
- LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流
题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...
- 【LOJ】#2548. 「JSOI2018」绝地反击
题解 卡常卡不动,我自闭了,特判交上去过了 事实上90pts= = 我们考虑二分长度,每个点能覆盖圆的是一段圆弧 然后问能不能匹配出一个正多边形来 考虑抖动多边形,多边形的一个端点一定和圆弧重合 如果 ...
- 【JSOI2018】绝地反击
题面 50pts 首先当然是二分答案\(mid\), 对于每一个点,以它为圆心的圆,交上攻击轨道: 那么这个点到攻击轨迹的可达范围就是一段圆弧. 怎么求这段圆弧呢? 我们知道圆弧可以用其两端点对于圆心 ...
- JSOI2018简要题解
来自FallDream的博客,未经允许,请勿转载,谢谢. 有幸拜读到贵省的题目,题的质量还不错,而且相比zjoi可做多了,简单发一下题解吧. 还有就是,怎么markdown在博客园上的代码这么丑啊 「 ...
- JSOI2018 简要题解
潜入行动 复杂度分析题. 定义状态fi,j,0/1,0/1f_{i,j,0/1,0/1}fi,j,0/1,0/1表示以iii为根子树放jjj个机器iii这个放不放,iii这个是否已放来进行dpdpd ...
随机推荐
- fhq treap
学了一下,好像明白了(背下来了) 不想写main函数了 PS:这个比treap好写(私以为) #include<bits/stdc++.h> using namespace std; in ...
- FT View SE联合Studio 5000仿真
前言:一个实际的自动化项目,都是综合性的,不仅需要PLC进行逻辑.顺序.运动等控制,还需要在上位机进行监视和操作.当没有物理PLC时,上位机软件就无法连接到实际的变量数据,开发出来的界面和功能无法验 ...
- Python爬虫之12306-买票器小白源码
研究不易 import requests import re import urllib.parse import json import datetime from collections impo ...
- SpringMVC-简单总结
要学习一项技术,首先要知道, 它是什么, 为什么要用它 , 它由哪些东西组成, 每个东西是干什么的, 它们怎么综合在一起的 参考博客: 平凡希: https://www.cnblogs.com/xia ...
- 关于this绑定的四种方式
一.前言 我们每天都在书写着有关于this的javascript代码,似懂非懂地在用着.前阵子在看了<你不知道的JavaScript上卷>之后,也算是被扫盲了一边关于this绑定的四种方式 ...
- 论文翻译:Neural Networks With Few Multiplications
目录 Abstract 1. Introduction 2.Related Work 3.Binary And Ternary Connect 3.1 BINARY CONNECT REVISITED ...
- OnePlus5刷机后一直检查更新
大概是由于爱折腾,上一个手机是Nexus5,现在又是Oneplus5,闲来无事就爱刷机. 昨天看OnePlus官网的氧OS更新到Android9.0,于是又开启了刷机旅程. 显然这次没有之前那么顺利, ...
- Power BI行级别安全性(数据权限管理)
自从PowerBI 的DAX 函数 支持username() 或 userprincipalname()的函数后,我们就可以在Power BI中实现根据用户的行级数据权限的控制. username() ...
- 吴恩达《机器学习》编程作业——machine-learning-ex1:线性回归
❄❄❄❄❄❄❄❄[回到目录]❄❄❄❄❄❄❄❄ 本次编程作业中,需要完成的代码有如下几部分: [⋆] warmUpExercise.m - Simple example function in Octa ...
- 爬虫 requests模块的其他用法 抽屉网线程池回调爬取+保存实例,gihub登陆实例
requests模块的其他用法 #通常我们在发送请求时都需要带上请求头,请求头是将自身伪装成浏览器的关键,常见的有用的请求头如下 Host Referer #大型网站通常都会根据该参数判断请求的来源 ...