Description:

给定一棵树,每次询问某点子树中到其不超过k的所有点的最小点权

强制在线

Hint:

\(n,m\le 10^5\)

Solution:

看到题目第一反应是以深度为下标,dfs序为版本建树

然而不行,因为min不满足前缀可减

所以我们换过来,每个\(dep\)建树表示\(<=dep\)所有点的权值

在上面直接查x子树的min就好了

貌似这题用线段树合并就是SBT......

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int mxn=5e5+5,inf=1e9;
int n,m,tot,cnt,rk[mxn],hd[mxn]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt;
}t[mxn<<1]; inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
} int df,dep[mxn],lst[mxn],dfn[mxn],tr[mxn<<5],ls[mxn<<5],rs[mxn<<5],a[mxn],rt[mxn]; void dfs(int u,int fa) {
dep[u]=dep[fa]+1; dfn[u]=++df;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u);
}
lst[u]=df;
} int cmp(int x,int y) {
return dep[x]<dep[y];
} void update(int las,int &p,int l,int r,int pos,int val) {
p=++tot;
if(l==r) {tr[p]=min(tr[p],val);return ; }int mid=(l+r)>>1;
if(pos<=mid) update(ls[las],ls[p],l,mid,pos,val),rs[p]=rs[las];
else update(rs[las],rs[p],mid+1,r,pos,val),ls[p]=ls[las];
tr[p]=min(tr[ls[p]],tr[rs[p]]);
} int query(int p,int l,int r,int ql,int qr) {
if(!p) return inf;
if(ql<=l&&r<=qr) return tr[p];
int mid=(l+r)>>1; int res=inf;
if(ql<=mid) chkmin(res,query(ls[p],l,mid,ql,qr));
if(qr>mid) chkmin(res,query(rs[p],mid+1,r,ql,qr));
return res;
} int r; int main()
{
n=read(); r=read(); int u,v,p,q; memset(tr,0x3f,sizeof(tr));
for(int i=1;i<=n;++i) rk[i]=i,a[i]=read();
for(int i=1;i<n;++i) {
u=read(); v=read();
add(u,v); add(v,u);
}
dfs(r,0); int ans=0;
sort(rk+1,rk+n+1,cmp);
for(int i=1;i<=n;++i)
update(rt[dep[rk[i-1]]],rt[dep[rk[i]]],1,n,dfn[rk[i]],a[rk[i]]);
m=read();
for(int i=1;i<=m;++i) {
p=(read()+ans)%n+1; q=(read()+ans)%n;
printf("%d\n",ans=query(rt[min(dep[p]+q,dep[rk[n]])],1,n,dfn[p],lst[p])); //注意特判深度超出最大深度
}
return 0;
}

[CF893F] Subtree Minimum Query的更多相关文章

  1. CF893F Subtree Minimum Query 解题报告

    CF893F Subtree Minimum Query 输入输出格式 输入格式: The first line contains two integers \(n\) and \(r\) ( \(1 ...

  2. CF893F:Subtree Minimum Query(线段树合并)

    Description 给你一颗有根树,点有权值,m次询问,每次问你某个点的子树中距离其不超过k的点的权值的最小值.(边权均为1,点权有可能重复,k值每次询问有可能不同,强制在线) Input 第一行 ...

  3. CF893F Subtree Minimum Query 主席树

    如果是求和就很好做了... 不是求和也无伤大雅.... 一维太难限制条件了,考虑二维限制 一维$dfs$序,一维$dep$序 询问$(x, k)$对应着在$dfs$上查$[dfn[x], dfn[x] ...

  4. Codeforces 893F - Subtree Minimum Query

    893F - Subtree Minimum Query 题意 给出一棵树,每次询问 \(x\) \(k\),求以 \(x\) 为根结点的子树中的结点到结点 \(x\) 的距离小于等于 \(k\) 的 ...

  5. [cf contest 893(edu round 33)] F - Subtree Minimum Query

    [cf contest 893(edu round 33)] F - Subtree Minimum Query time limit per test 6 seconds memory limit ...

  6. Educational Codeforces Round 33 (Rated for Div. 2) F. Subtree Minimum Query(主席树合并)

    题意 给定一棵 \(n\) 个点的带点权树,以 \(1\) 为根, \(m\) 次询问,每次询问给出两个值 \(p, k\) ,求以下值: \(p\) 的子树中距离 \(p \le k\) 的所有点权 ...

  7. Subtree Minimum Query CodeForces - 893F (线段树合并+线段树动态开点)

    题目链接:https://cn.vjudge.net/problem/CodeForces-893F 题目大意:给你n个点,每一个点有权值,然后这n个点会构成一棵树,边权为1.然后有q次询问,每一次询 ...

  8. 2019.01.19 codeforces893F.Subtree Minimum Query(线段树合并)

    传送门 线段树合并菜题. 题意简述:给一棵带点权的有根树,多次询问某个点ppp子树内距离ppp不超过kkk的点的点权最小值,强制在线. 思路: 当然可以用dfsdfsdfs序+主席树水过去. 然而线段 ...

  9. EC Round 33 F. Subtree Minimum Query 主席树/线段树合并

    这题非常好!!! 主席树版本 很简单的题目,给一个按照指定节点的树,树上有点权,你需要回答给定节点的子树中,和其距离不超过k的节点中,权值最小的. 肯定首先一想,按照dfs序列建树,然后按照深度为下标 ...

随机推荐

  1. JAVA集合1--总体框架

    JAVA集合是JAVA提供的工具包,包含了常用的数据结构:集合.链表.栈.队列.数组.映射等.JAVA集合工具包的位置是java.util.* JAVA集合主要可以分为4个部分:List.Set.Ma ...

  2. python3 练手实例2 解一元二次方程组

    import math def y(): a,b,c=map(float,input('请输入一元二次方程式ax^2+bx+c=0,abc的值,用空格隔开:').split()) d=math.pow ...

  3. python3抓图学习-百度贴吧

    # coding=utf-8 from bs4 import BeautifulSoup import urllib.request import os import time def downlao ...

  4. 一、下载安装superset

    1.环境介绍: 操作系统:Windows 10 python版本:3.73 2.创建虚拟环境: 打开命令行窗口,使用安装python自带的pip命令,下载pinenv 虚拟环境工具, pip inst ...

  5. C#调用Bartender打印

    BarTender是一款优秀的条形码打印软件,可以支持很多种类型的条形码设计和打印,具体大家可参考他的官网(http://www.seagullscientific.com/aspx/products ...

  6. C# 解析torrent文件

    基础知识: torrent文件信息存储格式: bencoding是一种以简洁格式指定和组织数据的方法.支持下列类型:字节串.整数.列表和字典. 1 字符串存储格式:  <字符串的长度>:& ...

  7. L1-Day15

    1.      我记得昨天锁门了呀.(什么关系?“记得”后面,如果接动词,那动词该是什么形式?) [我的翻译]I remembered locking the door yestarday. [标准答 ...

  8. Visual studio 2017添加引用时报错未能正确加载ReferenceManagerPackage包的解决方法

    vs2017添加引用时报错未能正确加载“ReferenceManagerPackage”包. - AusonSir - 博客园https://www.cnblogs.com/-bao/p/674941 ...

  9. linux 安装配置 sublime 进行 python 开发

    1. 下载sublime 地址:http://www.sublimetext.com/3 2. 解压出来,将sublime_text_3 文件夹的名字改为 sublime_text , 然后将 sub ...

  10. Mongodb 安装错误汇总

    Failed to restart mongod.service: Unit mongod.service not found. 解决方法: Most probably unit mongodb.se ...